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Abstract: Pain is a multidimensional and highly personalized sensation that affects individuals’ physical and emotional 
state. Visual analog scales, numeric rate indicators, and various questionnaires, all relying on patient-reported 
outcome measurements, are considered the “gold” standard methods for assessing the severity of pain. 
Nevertheless, self-report tools require cognitive, linguistic, and social abilities, which may manifest variations 
in certain populations such as neonates, individuals with intellectual disabilities, and those affected by 
dementia. The purpose of this study is to automate the process through multimodal physiological-data-driven 
machine-learning models in order to gain deeper insights into pain sensation. We developed a pipeline using 
electrocardiogram (ECG), galvanic skin response (GSR), and electromyogram (EMG), along with 
demographic information from the BioVid dataset. The Pan & Tompkins algorithm was applied for ECG 
signal processing, while statistical analysis was used for feature extraction across all signals. Our study 
achieved 82.83% accuracy in the SVM classification task of baseline (BL) vs the highest level of pain (PA4) 
for females aged 20-35.

1 INTRODUCTION 

Pain is a multidimensional and subjective experience 
that affects patients’ physical and psychological state 
(Lopez-Martinez & Picard, 2018). According to the 
International Association for the Study of Pain, is 
defined as “the unpleasant sensory and emotional 
experience associated with, or resembling that 
associated with actual or potential tissue damage” 
(Raja et al., 2020). Medical professionals, scientists, 
and official organizations, including the World 
Health Organization, have adopted this terminology.  

The duration of pain consists of a broad range. For 
instance, it may last from a few minutes to even years, 
and its intensity varies. It is classified as acute or 
chronic (Loeser & Melzack, 1999). The first one is 
sudden, intense, and short-term, often caused by 
wounds, injuries, or broken bones. In contrast to 
acute, chronic pain is an ongoing situation, that lasts 
more than three months and can cause distress (Fayaz 
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et al., 2016). This type of discomfort is categorized as 
a disease and might be difficult to diagnose. It could 
impact on physical status, psychological state, and 
overall quality of life. These consequences also 
impose a psycho-social burden on individuals, their 
families, and society. 

Pain consists of three aspects: the intensity, the 
duration, and the distribution (Fayaz et al., 2016). The 
first one is the level of pain, varying from minor to 
unpleasant or severe. The second aspect concerns the 
period that pain lasts and is defined as acute or 
chronic, as previously explained. The distribution of 
pain indicates exactly where the patient experiences 
discomfort. In order to address and manage pain 
appropriately, it is important to identify all of them. 

The current clinical tools in order to estimate and 
evaluate the level of pain depends on patient-reported 
outcome measurements (Takai et al., 2015). The most 
typical methods contain scales for patients to assess 
the pain experience on a range of 0-10 or 0-100. 
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However, these processes are time-consuming and 
financially burdensome for healthcare facilities. Self-
reports also demand cognitive, linguistic, and social 
abilities that may vary in children, and other 
populations such as newborns, and individuals with 
dementia (Susam et al., 2022). 

There is growing evidence that the autonomic 
nervous system (ANS), a part of the peripheral 
nervous system, is interconnected with pain 
perception (Hohenschurz-Schmidt et al., 2020). 
Consequently, several studies have explored and 
documented changes in the ANS that occur when 
subjects are exposed to painful stimuli. The main role 
of the ANS in the pain response is to point out 
physiological biomarkers for investigation 
(Fernandez Rojas et al., 2023). The pain process is 
often initiated by unpleasant mechanical, heat, or cold 
stimuli of an endogenous or exogenous origin, 
activating the sensory neural pathway. As a result, 
physiological biosignals typically stem from this 
process, making them excellent choices for 
automated pain recognition and assessment. 

Accurate pain assessment remains one of the 
strongest challenges in medical and research studies. 
The objective of our study was to develop a 
framework for automated pain recognition and 
assessment using multimodal physiological 
biosignals. We employed the BioVid dataset and 
conducted unimodal and multimodal experiments in 
order to compare the performance of each approach. 
Finally, we explored the role of demographic 
characteristics, such as gender and age, on pain 
perception and sensitivity and their influence on the 
experimental outcomes. 

2 RELATED WORK 

Most studies in pain research focus on biological 
signals because of the difficulties in interpreting 
imaging and audiovisual modalities, especially in 
clinical settings where individuals may feel 
uncomfortable about recording. As a result, 
researchers have explored in depth the correlation 
between pain and various physiological responses, 
such as cardiovascular activity, muscle function, 
electrodermal activity (EDA), brain function, and 
respiratory rate. Indicate such studies and their results 
are reported in what follows. 

Walter et al. (2013) were the initial researchers to 
employ the BioVid Heat Pain dataset. Lopez-
Martinez and Picard (2018) also used this dataset to 
investigate personalized nociceptive pain 
recognition. They extracted 17 time-domain features 

from skin conductance (SC) and ECG they developed 
logistic regression, support vector machines (SVMs) 
with various kernels (Linear/RBF kernels), multitask 
neural networks (MT-NN), and single-task neural 
networks (ST-NN) with 10-fold cross-validation. 
They reported that MT-NN performed better than 
other approaches in the binary classification task of 
baseline (BL) versus pain level 4 (PA4). 

Additional integrations of similar signals have 
been recognized in the scientific community. Thiam 
et al. (2019) developed a 2D model using these 
modalities. They used early fusion and delivered it 
into a 9-layer 2D convolution neural network (CNN). 
They reported a strong association between EDA and 
pain severity. The interesting observation was that the 
multimodal approach did not result in higher scores 
than EDA alone. In their following study, they 
suggested a multimodal data fusion approach for 
binary classification using biosignals from the same 
dataset, relying on deep denoising convolutional 
autoencoders (DDCA). Subramaniam and Dass 
(2021) explored ECG and GSR modalities from the 
BioVid and created a hybrid deep learning (DL) 
network. They implemented CNN to extract pain 
information from physiological signals and an LSTM 
network for feature concatenation to map nociceptive 
pain from input data to detection. They reported that 
GSR provided the highest performance in unimodal 
experiments, achieving 85.66% between the BL vs 
PA1 task. The multimodal approach increased their 
results by reporting 94.12% in the same classification 
task. 

There is a critical need for a precise and reliable 
method of assessing acute discomfort and level of 
pain, especially in postoperative patients or 
hospitalized individuals. This entails continuous 
monitoring of various biological indicators. Chu et al. 
(2017) employed linear discriminant analysis, k-
nearest neighbors (k-nn), and SVMs in a dataset of 
six subjects with no medical history. They 
categorized patients’ pain into five different levels 
using a multimodal approach that included ECG, 
blood volume pulse, and GSR. According to their 
results, SVMs performed better. Aqajari et al. (2021) 
used the Empatica E4 wristband in order to collect 
GSR data from 25 post-operative patients. They 
applied two machine-learning algorithms and used 
four binary classification tasks to discriminate 
between the BL and the four pain intensities. Despite 
challenges in assessing actual clinical information, 
their models outperformed the BioVid paper 
approach for the first three pain models. In a different 
study, Naeini et al. (2021) gathered a group of 25 
postoperative patients aged between 18 and 65. They 
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extracted 19 time-domain HRV features and devised 
an automated framework to evaluate the subjects 
pain. The highest accuracy was achieved using 
SVMs, between the BL and pain level 2 (PA2). 

Recent studies on automated pain estimation and 
evaluation have focused on demographic factors and 
how they could affect the level of pain discomfort. 
This shift is driven by the realization that nociception 
contains social aspects, underling the need to examine 
pain from both physiological and psychosocial 
perspectives (Bartley & Fillingim, 2013). In this 
context, Gkikas et al. (2022) analyzed ECG and 
employed SVMs to categorize pain intensity by 
exploiting gender and age. Their study showed 
substantial variations between genders. Especially in 
higher intensities of pain, males reported less 
sensitivity. In their subsequent work (Gkikas et al., 
2023), they suggested neural networks with single 
task learning. For binary and multiclass tasks, they 
reported accuracies of 71.67% and 31.53% in the 
females and 71.33% and 29.73% for males in the 20-
35 age group. 

3 METHODOLOGY 

Given what was referred to previously, multimodal 
approaches yielded better results. However, further 
investigation of the dataset is still required. This study 
explored all the available physiological biosignals in 
the BioVid and combined demographic data in order 
to draw conclusions regarding the influence of these 
factors on pain perception and sensitivity.  

This section presents a comprehensive overview 
of the dataset, feature extraction, along with the 
experimental pipeline. 

3.1 BioVid Dataset 

The BioVid Heat Pain Database (Walter et al., 2013) 
incorporates physiological biosignals along with 
frontal video material for detecting and classifying 
heat-induced pain. The data collection process 
involved 90 subjects, equally divided between the 
ages of: 20-35, 36-50, and 51-65. In order to provoke 
pain, a thermode, a device attached to the skin, was 
used. The experiment was conducted in five phases, 
during which four different temperature stimuli were 
applied for 25 minutes. Each temperature setting 
underwent 20 repetitions and lasted 4 seconds. 
BioVid consists of five datasets, each one includes a 
different variety of sources. We used the Part A 
dataset, which encompasses physiological biosignals 
such as ECG, GSR, and EMG (Trapezius muscle). 

Part A is the most well-known and referenced dataset 
in pain research. Before the experimental process, 
each subject’s medical history was reviewed. The 
exclusion criteria covered brain-related conditions, 
long-lasting pain, heart-related conditions, and the 
intake of painkillers right before the trial. 

The initial sample size for the study was 90 
subjects; however, three patients’ samples were 
excluded due to technical troubles during data 
collection, creating a dataset of 87 subjects. BioVid 
includes pre-segmented intervals with duration of 5.5 
seconds, and a 3-second delay. The intensities were 
determined based on data collected at a baseline 
temperature T0 of 32 0C. Each temperature was 
applied 20 times, with 100 data samples per 
participant, resulting in 8.700 samples used as input 
in our experimental pipeline. 

3.1.1 ECG Features 

The first step involved implementing the Pan and 
Tompkins algorithm (1985) in order to identify QRS 
complex in the ECG signal. 

The algorithm is structured into the following 
phases: the preprocessing and the decision-making 
phase.  The first one involves noise cancellation, 
signal filtering, and QRS’s complex amplitude and 
slope improvement. The application of a band-pass 
filter serves to mitigate the impact of noise. A filter 
within the range of 5 to 15 Hz was achieved by 
sequentially cascading the Low Pass Filter (LPF) and 
High Pass Filter (HPF). The LPF was employed to 
eliminate high-frequency noise components, such as 
power line interference, and T-wave interference, 
thus capturing the low-frequency signals. On the 
other hand, the HPF was used to diminish low-
frequency noise, including baseline wander.  

Following the application of the filtering process, 
the signal is isolated, with a specific emphasis on 
determining the slope characteristics of the optimal 
QRS complex. During the differentiation stage, the 
low-frequency P and T-waves were eliminated. As a 
result, all the sample points become positive. The 
final step is to apply the moving window integration 
(MWI).  

The peaks are located in the integrated signal to 
identify a QRS complex. To decrease the chances of 
choosing the wrong peak as a QRS complex, we 
compare the peaks with a limit value. This limit value 
changes automatically after identifying a new peak. If 
the process fails to detect a QRS complex, an 
additional search begins. In case no QRS is found in 
a specific time, the half value of the limit is used in 
order to detect the highest peak that falls within that 
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time as possible QRS complex. Adaptive thresholds 
improve the dependability of R peak identification. 
The band-pass filter optimizes the waveform ratio for 
low thresholds, with the higher of the two thresholds 
in each set initially applied to the signal. In instances 
where no QRS complex is identified within a 
specified window, the lower threshold is applied, and  
a search-back method begins to search for any missed 
peaks.  

After the application of the algorithm, we 
extracted the following six (6) features: 
 

• Mean of Inter-beat intervals (IBIs): 

μ = 
1𝑁  ෍(𝑅𝑅௜ାଵ − 𝑅𝑅௜)ே

௜ୀଵ  (1)

• The heart rate:  

Heart Rate = 
60 ∙  𝐹𝑠𝜇  (2)

• The root mean square of the successive 
differences: 

RMSSD = ඩ 1𝑁 − 1 ෍(RR୧ାଵ − RR୧)ଶே
௜ୀଵ  (3)

• The standard deviation of the NNs: 

SDNN = ඩ 1𝑛 − 1 ෍(RR୧ − RRതതതത)ଶ௡
௜ୀଵ  (4)

• The slope of the linear regression:     A୘ A୶= A୘b (5)

• Ratio of SDNN to RMSSD, which is a 
metric of the heart’s rate acceleration: RatioSR =  𝑆𝐷𝑁𝑁𝑅𝑀𝑆𝑆𝐷 (6)

3.1.2 GSR Features 

Through the statistical analysis, we calculated the 
mean absolute value of first differences (MAVFD), 
and he mean absolute value of second differences 
(MAVSD) for both raw and standardized signals as 
well as the above twelve (12) features:  

• Maximum 
• Standard Deviation 
• Mean 
• Root mean square 
• Range 
• Interquartile range 
• MAVFD 1𝑁 − 1 ෍ |𝑥௜ାଵேିଵ

௜ୀଵ − 𝑥௜| (7)

• MAVSD 1𝑁 − 2 ෍ |𝑥௜ାଶேିଶ
௜ୀଵ − 𝑥௜| (8)

• MAVFD of the standardized signal 
• MAVSD of the standardized signal 
• Skewness 
• Kurtosis 

3.1.3 EMG Features 

First, a Butterworth band-pass filter (20–250 Hz) is 
used for the signal. Through the statistical analysis, 
we extracted the following six (6) characteristics: 

• Maximum 
• Standard deviation 
• MAVFD 
• MAVSD 
• MAVFD of the standardized signal 
• MAVSD of the standardized signal 

3.2 Classification Models 

Handling missing values and noisy data was part of 
the pre-processing step. Subsequently, we divided our 
dataset into three groups: a) based on gender, b) based 
on the age group, and c) based on both gender and 
age. The next step was the feature extraction phase for 
24 features. We developed SVMs with different 
kernels (Linear/Gaussian/Polynomial) and LSTM 
models aimed at detecting pain as well as assessing 
the intensity of it using the leave-one-subject-out 
(LOSO) cross validation method, ensuring unbiased 
and robust results. 
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Figure 1: ECG signal preprocessing. 

3.2.1 Support Vector Machines 

We utilized the following various kernels for our ML 
experimental process in order to compare them: 
 

• SVM with Gaussian kernel: 

K(𝑥ଵ, 𝑥ଶ) = exp (− ห|௫భି௫మ|หమଶఙమ ) (9)

• SVM with Linear kernel: 

K(𝑥ଵ, 𝑥ଶ) =  𝑥ଵ்𝑥ଶ (10)

• SVM with Polynomial kernel: 

K(𝑥ଵ, 𝑥ଶ) =  (𝑥ଵ்𝑥ଶ + 1)ఘ (11)

3.2.2 LSTM Pipeline 

The data was first converted into a three-dimensional 
format that model could exploit. The target variable 
was encoded with the label encoding in order to 
conduct binary and multiclass experiments. 
Preprocessing steps involve the reshaping of the input 
data to incorporate temporal information from 
previous time-steps, thus improving the model’s 
capacity to recognize sequential patterns. 

We developed stacked LSTMs for our 
experimental process. The first layer consists of 5 
units and uses the hyperbolic tangent (tanh) activation 
function. The following 3-LSTM-layers consist of 64 
units. These layers continue to process and analyze 

the information, capturing more complex patterns. 
The final layer has 5 units. We also included a dense 
layer with 5 units for each of the five-categories 
(multiclass classification). Each unit in the dense 
layer represents a class. For the binary classification 
tasks, we have one, producing a single probability 
value. 

The model’s ability to process sequential input is 
its greatest advantage. Physiological signals related to 
pain often present time-dependences, necessitating 
the development of a model that can learn patterns as 
they change. Finally, stacked LSTMs are flexible and 
can handle variable-length sequences. Pain is a 
personalized sensation, and the model’s capacity to 
adjust to different signal lengths contributes to its 
robustness.  

4 RESULTS 

The classification tasks were executed in multiclass 
and binary approaches. We conducted five categories 
of experiments, each with a distinct objective: 1) 
Binary and multiclass experiments for all dataset in 
both unimodal and multimodal tasks including BL, 2) 
Binary and multiclass experiments between pain 
levels categories in both unimodal and multimodal 
tasks, 3) Binary and multiclass multimodal gender-
based classification tasks, dividing the dataset into 
male and female groups, 4) Binary and multiclass 
multimodal age-based classification tasks, based on 
subjects’ ages: 20-35, 36-50, and 51-65, and 5) 
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Binary and multiclass multimodal gender-age based 
classification tasks. The results for each classification 
task, along with the model used, are presented in 
Tables 1-7. 

Table 1:  GSR accuracy for all dataset. 

Signal Task SVM* LSTM

GSR 

BL vs PA1 51.46% 52.01%

BL vs PA2 57.04% 55.60%

BL vs PA3 65.45% 65.34%

BL vs PA4 75.60% 76.86%

All Pain 
Levels× 35.77% 37.52% 

 *Polynomial Kernel × PA1 vs PA2 vs PA3 vs PA4 

Table 2: ECG accuracy for all dataset. 

Signal Task  SVM* LSTM

ECG 

BL vs PA1 51.86% 51.20%

BL vs PA2 52.84% 52.47%

BL vs PA3 55.14% 54.39%

BL vs PA4 58.39% 57.58%

All Pain 
Levels× 29.06% 28.87% 

 *Polynomial Kernel × PA1 vs PA2 vs PA3 vs PA4 

Table 3: EMG accuracy for all dataset. 

Signal Task SVM* LSTM

EMG 

BL vs PA1 49.91% 50%

BL vs PA2 52.67% 53.70%

BL vs PA3 53.67% 53.85%

BL vs PA4 55.37% 56.83%

All Pain 
Levels× 27.38% 28.49% 

 *Polynomial Kernel × PA1 vs PA2 vs PA3 vs PA4 
 

In unimodal experiments has been noted that GSR 
demonstrates superior performance compared to 
ECG and EMG as shown in Tables 1-3. Specifically, 
the highest accuracy percentages in binary 
experiments were observed between BL versus 
higher-intensity conditions (PA4). In machine 
learning experiments, GSR achieved 75.60% and 
35.77%, in binary and multiclass tasks respectively, 

while in LSTM experiments, achieved a mean 
accuracy of 76.86% and 37.52%. 

Multimodal approaches outperform unimodal   
methods, in both binary and multiclass experiments. 
The combination of biosignals led to a slight 
improvement in accuracy performance compared to a 
single modality. Experiments with SVM models 
reported better results with the polynomial kernel in 
all classification tasks, binary and multiclass. 

Table 4: Multimodal accuracy for all dataset. 

Signal Task SVM* LSTM

All 

BL vs PA1 52.38% 51.40%

BL vs PA2 58.47% 56.81%

BL vs PA3 65.97% 63.13%

BL vs PA4 76.69% 77.21%

All Pain 
Levels× 37.09% 37.74% 

*Polynomial Kernel × PA1 vs PA2 vs PA3 vs PA4 
 

In addition, we explored demographics 
emphasizing whether gender affects pain 
classification outcomes. We noticed that males were 
less sensitive to higher intensities than females. For 
instance, in experiments between no-pain conditions 
versus the highest level of pain (PA4), female 
subjects presented an accuracy rate of 77.61% in 
SVM and a mean accuracy of 79.88% in LSTM 
models, which were higher than the 72.61% and 
70.85% recorded for male subjects, respectively. The 
divergence in classification results between genders 
was even more pronounced at lower pain intensities, 
with women consistently achieving higher accuracy 
rates than men.  

 
Figure 2: Multimodal gender classification. 
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Table 5: Multimodal gender-based classification. 

Group Task SVM* LSTM

Fe
m

al
es

 

BL vs 
PA1 51.86% 50.41% 

BL vs 
PA2 58.83% 58.37% 

BL vs 
PA3 64.47% 63.95% 

BL vs 
PA4 77.61% 79.88% 

All Pain 
Levels× 38.45% 38.74% 

  

M
al

es
 

BL vs 
PA1 53.63% 52.10% 

BL vs 
PA2 57.67% 56.70% 

BL vs 
PA3 65.51% 63.69% 

BL vs 
PA4 72.61% 70.85% 

All Pain 
Levels× 33.86% 33.49% 

*Polynomial Kernel ×BL vs PA1 vs PA2 vs PA3 vs PA4 

Table 6: Multimodal female-age-based classification. 

Group Signal Task SVM*

Fe
m

al
es

 
20

-3
5 

ECG 
GSR 
EMG 

BL vs PA1 54.50%
BL vs PA4 82.83%

PA1 vs 
PA4 81.33% 

All Pain 
Levels˚ 33.46% 

Fe
m

al
es

  
36

-5
0 

ECG 
GSR 
EMG 

BL vs PA1 51%
BL vs PA4 75.83%

PA1 vs 
PA4 71.33% 

All Pain 
Levels× 27.53% 

 

Fe
m

al
es

 5
1-

65
 

ECG 
GSR 
EMG 

BL vs PA1 51.15%
BL vs PA4 60%

PA1 vs 
PA4 62.50% 

All Pain 
Levels× 23.66% 

*Polynomial Kernel ×BL vs PA1 vs PA2 vs PA3 vs PA4 

All models exhibited better performance between BL 
and the highest pain intensity task, in unimodal and 
multimodal tasks. As the deviation among category 
pain levels increases, we noticed high accuracy in 

binary tasks. Classifications between the lowest pain 
intensities versus the BL (PA1 vs BL) do not present 
noticeable differences, thereby complicating the 
model’s ability to differentiate the classes. In contrast, 
the performance of models between the highest and 
the lowest level of pain or the BL (P4 vs PA1 or PA4 
vs BL), was higher due to the distinctiveness of the 
categories as presented in Table 7. 

Table 7: Multimodal male-age-based classification. 

Group Signal Task SVM*

M
al

es
 

20
-3

5 

ECG 
GSR 
EMG 

BL vs PA1 53%
BL vs PA4 80.16%
PA1 vs PA4 74.16%

All Pain 
Levels× 30.86% 

M
al

es
  

36
-5

0 

ECG 
GSR 
EMG 

BL vs PA1 51.78%
BL vs PA4 63.35%
PA1 vs PA4 60.17%

All Pain 
Levels× 23.71% 

 

M
al

es
  

51
-6

5 ECG 
GSR 
EMG 

BL vs PA1 51.33%
BL vs PA4 55.83%
PA1 vs PA4 52%

All Pain 
Levels× 23.66% 

*Polynomial Kernel ×BL vs PA1 vs PA2 vs PA3 vs PA4 

 
Figure 3: Multimodal gender-age classification. 

 
Regarding the age factor, notable variations were 

detected indicating that sensitivity to pain decreases 
with age for both males and females. Gender 
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differences in pain classification were particularly 
evident among younger individuals. According to our 
outcomes young women (20-35 years old) have 
significantly lower thresholds on pain compared to 
men in the same age group. However, as is shown in 
Figure 3, these gender-age differences became less 
statistically insignificant as age increases. This is an 
essential observation, considering that older 
individuals may not experience pain as younger ones 
and eventually this can contribute to the development 
of chronic pain over time. The conducted experiments 
presented variability between genders, with males 
demonstrating reduced sensitivity, in cases of higher 
pain intensities as shown in Table 5. This 
phenomenon warrants further investigation, as it 
presents an area of concern that requires closer 
attention.  

Table 8: Comparison accuracy of across studies utilizing 
BioVid dataset, biosignals, demographic data. 

Authors Signal BL vs PA4*
Lopez-Martinez 
& Picard (2018) 

• 
ECG, SC 82.75% 

Subramanian et 
al. (2021) ECG 81.71% 

Subramanian et 
al. (2021) EDA 76.79% 

Gkikas et al. 
(2022) ECG 63.83% 

Gkikas et al. 
(2023) ECG 71.67% 

Ours ECG 
GSR, EMG 82.83% 

*Higher performance in the multimodal gender-age-based 
task between BL and PA4 • Validation method: 10-fold-
cross-validation. 

 
Although BioVid has been extensively employed 

as an input in several studies over the years, deeper 
investigation into gender and age is warranted. Table 
8 illustrates the studies, as referred in section 2, 
utilizing the same dataset, focused on physiological 
signals and demographic factors, and highlights the 
best classification performance between the baseline 
and the very intense pain level. In the majority, they 
explored one physiological modality with the 
integration of demographics and achieved interesting 
outcomes with ML and DL techniques. In this 
context, we aimed to address a gap in leveraging all 
the available biosignal source channels. Our study 
emphasizes the introduction of demographics as 
influencing variables in the multimodal 
physiological-data-driven ML models and their 

potential impact on experimental outcomes. Finally, 
we applied the LOSO cross validation method, 
commonly employed in previous studies for 
comparison, and achieved the highest accuracy of 
82.83% in the classification task of BL versus PA4 
for the female group aged 20-35.  

5 CONCLUSIONS 

Accurate pain assessment and effective pain 
management are fundamental for public health. The 
present study focused on the development of ML 
models for automated pain recognition and 
assessment using multimodal physiological data. We 
exploited demographic information of the BioVid 
dataset, such as gender and age, to capture possible 
alterations in pain sensitivity and result variations. 
The experimental pipeline was divided into two 
classification tasks: the recognition of pain and the 
categorization of its intensity. 

To gain a deeper insight into the correlation 
between pain and demographics, we made some 
observations regarding each classification task 
outcome. The conducted experiments revealed 
significant disparities between genders, with the male 
population tending to report lower accuracy 
compared to women. This could suggest that the 
physiological signals captured by men were less 
distinct, potentially due to gender differences in pain 
perception, sensitivity, and the great impact on how 
we respond to pain (Keogh & Boerner, 2024). 
Moreover, in classification tasks where pain levels 
was very intense, younger participants surpassed the 
oldest age group (51-65 years old) and the middle-
aged group (35-50 years old). More precisely, young 
women achieved an accuracy improvement of 7% and 
22%, while men reported 17% and 25%, respectively. 
These findings suggest that demographics, among 
other factors such as psychological and socio-
contextual variables, play a pivotal role in pain 
sensation and in capturing biomarkers across 
different populations. Finally, based on what we 
presented in unimodal experiments in Tables 1-3 and 
the research stated, we infer that the physiological 
signal that contributes most to pain research is the 
GSR.  

In conclusion, the results are promising, but we 
are aware that additional investigations are required 
to resolve several challenges. The novelty of our 
approach lies in the integration of all three 
information sources from the dataset, emphasizing 
the influence of demographic factors, making our 
outcomes noteworthy. The association between pain 
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sensation, physiological signals and demographics is 
challenging and has not yet been widely integrated in 
biomedical research; however, it holds potential for 
future research findings. Finally, we aspire that the 
results stemming from this current work will further 
contribute to research in pain estimation and assist in 
extracting valuable and efficient information for 
personalized pain management strategies. 

5.1 Study Limitations 

The findings of this work are encouraging but also 
reveal several limitations that need to be considered 
for future research efforts. BioVid, a well-known and 
widely used pain dataset, lacks external factors such 
as individual emotional states. Confounding factors 
such as emotional state could influence further pain 
perception and sensitivity. 

This study focuses on physiological biosignals, 
excluding image and audio modalities. Our outcomes 
showed that EMG did not yield high performance 
rates. Therefore, different physiological signals, such 
as EEG, may enhance multimodal fusion and provide 
further insights into our research. Finally, it is 
essential to point out that our work centers on acute 
thermal pain in a laboratory research setting. The lack 
of further research into long-lasting pain conditions 
(e.g. cancer patients, low back pain) is due to the 
unavailability of public datasets in the pain research 
domain. 
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