
AI-AFACT: Designing AI-Assisted Formative Assessment of Coding
Tasks in Web Development Education

Franz Knipp1,2 a and Werner Winiwarter3 b

1University of Applied Sciences Burgenland, Eisenstadt, Austria
2University of Vienna, UniVie Doctoral School Computer Science DoCS, Vienna, Austria

3University of Vienna, Faculty of Computer Science, Vienna, Austria

Keywords: Computing Education, Artificial Intelligence, Formative Assessment, Web Development Education, Large
Language Model, Design Science Research.

Abstract: Large Language Models (LLMs) are finding their way into computer science education. In particular, their
natural language capabilities allow them to be used for formative assessment of student work, with the goal
of reducing teacher time. However, initial research shows that there are still weaknesses in their use. To
overcome this, this paper presents a design for an assessment tool that combines an LLM with a human-in-
the-loop approach to ensure high-quality feedback. The proposed system focuses on the assessment of student
submissions in the field of web technologies, which can be evaluated in different ways, including the content
of the submitted files and the graphical output. Therefore, the use of a multimodal LLM is being considered.
The innovative approach of a continuous learning system could significantly improve the efficiency of the
assessment process, benefiting both teachers and students.

1 INTRODUCTION

Feedback is an essential part of the educational pro-
cess, occurring in the evaluation of work as a summa-
tive assessment and through a formative assessment
“defined as information communicated to the learner
that is intended to modify his or her thinking or be-
havior to improve learning” (Shute, 2008). Formative
assessments play a crucial role in deepening under-
standing. It significantly influences motivation and
can improve learning outcomes (Leenknecht et al.,
2021). In addition, open-ended assignments can im-
prove the students’ motivation by allowing them to be
creative in finding solutions (Sharmin, 2022).

This paper focuses on the assessment of pro-
gramming work in the field of web technologies
that was specifically designed with HTML, CSS, and
JavaScript. Submissions to such assignments are typ-
ically open-ended and can be evaluated in different
ways, including the content of the files, their syntac-
tic validity, the graphical implementation of the task,
and by running automated tests in a browser (Siochi
and Hardy, 2015).

a https://orcid.org/0009-0002-1811-9782
b https://orcid.org/0000-0002-8343-1257

Manual review of such web projects is time-
consuming (Fu et al., 2008). In lessons with numer-
ous feedback cycles, teachers accumulate substantial
amounts of work. Learners often make similar mis-
takes, resulting in correspondingly similar feedback.
Therefore, automation in this area can provide valu-
able support.

Automated assessment tools have been used in the
field of computer science education for many decades.
They check the submissions against a set of rules de-
fined by the teacher. This restricts assignments to
simple and constrained tasks. Therefore, they don’t
work well for open-ended assessments and their use
for open-ended web projects has only been investi-
gated to a limited extent (Messer et al., 2023).

Generative AI, based on Large Language Mod-
els (LLMs), is already in use to generate feedback to
students (Neo et al., 2024; Azaiz et al., 2024). To
overcome the limitations of traditional rule-based au-
tomated assessment tools, the integration of an LLM
into the assessment process is a promising alternative.
By leveraging the capabilities of LLMs, it is possi-
ble to automate the evaluation of web projects with a
higher degree of flexibility and adaptability compared
to rule-based systems.

Knipp, F. and Winiwarter, W.
AI-AFACT: Designing AI-Assisted Formative Assessment of Coding Tasks in Web Development Education.
DOI: 10.5220/0013430500003932
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Computer Supported Education (CSEDU 2025) - Volume 2, pages 379-386
ISBN: 978-989-758-746-7; ISSN: 2184-5026
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

379



However, it is important to acknowledge the cur-
rent limitations of LLMs in this domain. General-
purpose LLMs and even programming-specialized
variants often exhibit limited support for the breadth
and depth of web technologies (Li et al., 2023).

To pave the way to filling this gap, the objectives
of this paper are to specify the requirements for an au-
tomated assessment tool and – based on the literature
– to derive an architectural design that is intended to
serve as a blueprint for its implementation by the au-
thors as well as other interested scientists and devel-
opers.

The research questions pursued in this paper are:

RQ1. Which requirements should an automated as-
sessment tool for web development education ful-
fill to serve as an effective and efficient tool?

RQ2. Based on the requirements identified in RQ1,
which architectural design can be derived follow-
ing a design science research approach?

This paper proposes a design for an assessment
tool for web development education that integrates a
multimodal LLM with a human-in-the-loop approach
to establish a continuous learning loop to ensure high-
quality feedback, even for cases not yet covered by
existing LLMs.

The remainder of this paper is organized as fol-
lows. In Section 2, we first present some relevant
background and related work. In Section 3, we then
introduce our research methodology based on the de-
sign science research paradigm, before describing the
individual DSRM activities (problem identification,
definition of objectives, architecture of the solution,
demonstration and evaluation) in Section 4 in more
detail. We conclude the paper in Section 5 with some
thoughts on future work.

2 BACKGROUND

2.1 Automated Grading and Feedback

Tools for automatic assessment of programming
courses date back to 1960 (Hollingsworth, 1960) and
have evolved since then.

The systematic literature review conducted by
Messer et al. (2023) highlights an increasing inter-
est in the development and implementation of auto-
mated grading tools in computer science education.
They review the period from 2017 to 2022, when unit
testing emerged as the most prevalent method, lim-
iting the applicability of the grading tools to short,
well-defined assignments as opposed to more open-
ended tasks. Machine learning techniques have al-

ready been integrated into some grading tools, but
Messer et al. (2023) did not consider LLMs due to
their recent emergence. Notably, two studies exam-
ined the grading time required by educators and re-
ported a positive impact of semi-automated processes
compared to manual grading (Insa et al., 2021; Muuli
et al., 2017). Some of the tools use linters and soft-
ware metrics designed for professional software de-
velopers, which can be overwhelming and sometimes
confusing for students. Messer et al. (2023) recom-
mend to further investigate automatic assessment of
web applications and open-ended assignments.

2.2 Automated Assessment Tools for
Web Development Education

Although Messer et al. (2023) categorize three of
the tools under the category of web languages, only
Nguyen et al. (2020) integrate CSS and HTML.
This assessment system evaluates the coding style of
group projects to determine the individual contribu-
tions of group members. It incorporates a code quality
checker, security checker, and coding style checker
into a Continuous Integration (CI) pipeline. This sys-
tem is employed in a second-year course focused on
web front-end development (Nguyen et al., 2020).

An older tool is ProtoAPOGEE by Fu et al.
(2008). This tool is used for advanced courses, in-
tegrating concepts such as security, database integra-
tion, and reliability. To test the correctness of the sub-
mitted project, test cases created by the teachers are
available, which test the submitted website step by
step in a controlled browser.

A similar concept is followed by WebWolf by
Siochi and Hardy (2015). The assessment is based
on test cases, comparable to unit tests, that are cre-
ated by the teachers and programmatically executed
through a controlled browser.

ProgEdu4Web by Duong and Chen (2024) takes it
a step further by integrating tools that check the syn-
tax and quality of the submitted code. Here too, the
test cases for functional tests must be provided by the
teacher. Additionally, it allows for group work.

2.3 LLMs for Software Development

With the advent of LLMs, their application in soft-
ware engineering tasks has been actively explored
since 2018, as demonstrated by Hou et al. (2024).
This field of research is highly dynamic, with dozens
of publications emerging monthly at the time of writ-
ing. Several models are available, both commercial
and open source, including specialized models such
as Codex (Chen et al., 2021) and general models such

CSEDU 2025 - 17th International Conference on Computer Supported Education

380



as OpenAI’s GPT-4. These models are capable of
performing tasks such as generating code from tex-
tual input, summarizing or explaining code segments,
creating tests, localizing and fixing bugs, or perform-
ing code reviews. Thus, the use of LLMs will bring
fundamental changes in the field of software develop-
ment, improving the productivity during coding and
reducing errors (Hou et al., 2024).

Notably, an LLM such as GPT-4 is capable of
solving coding problems used for software engineer-
ing interviews that are comparable to human perfor-
mance, as shown in Bubeck et al. (2023).

2.4 Multimodal Models

Building on the success of LLMs in processing nat-
ural language, research is expanding to include the
integration of non-textual information such as audio,
video and images. According to Naveed et al. (2024),
incorporating these modalities not only broadens the
application fields of LLMs but also enriches the
context, enhancing the situational understanding and
decision-making capabilities.

2.5 Use of LLMs in Computer Science
Education

Due to the extensive possibilities of LLMs in the field
of computer science, they are finding their way into
computer science lessons. Anishka et al. (2024) de-
scribe the use of an LLM based on GPT-3.5-Turbo in
an advanced computing class on distributed systems
as support tool for teaching assistants by generating
exam questions and evaluating the answers. It can
also check code snippets. The results show that LLMs
are very effective in generating exam questions, while
the feedback on the answers at times shows the effect
of hallucination, which limits accuracy. Apart from
this, the feedback was constructive and balanced, pro-
viding assistance to the teaching assistants. The feed-
back on the code snippets was comprehensive, but im-
provements are needed.

The research by Smolić et al. (2024) compares the
effects of zero-shot prompting and few-shot prompt-
ing to obtain comments and grades of programming
tasks in C. It uses GPT-3.5 and Gemini as LLMs.
Few-shot prompting shows an improvement in grad-
ing and generating more accurate comments. How-
ever, context is not well maintained. Therefore, a
human-in-the-loop approach is required.

Gabbay and Cohen (2024) investigate the use of
LLMs to close the gap of automated test-based feed-
back tools in a programming course for Python. The
presented program gives students feedback on sub-

mitted solutions. It uses customized prompts that pre-
vent the display of the correct solution or irrelevant
information. When comparing GPT-4 with GPT-3.5,
the former shows better performance. Nevertheless,
the rate of false positives is high. They are not rec-
ognized by beginners and thus have a negative impact
on the learning process.

The approach described by Liu and M’Hiri (2024)
goes beyond the evaluation and assessment of coding
assignments. It uses GPT-3.5 as an LLM-based vir-
tual teaching assistant that provides help in different
categories such as homework questions, code feed-
back, and explanation of complex concepts in an un-
dergraduate course in Python. To do this, it uses a
multi-step process in which students’ questions are
categorized. Depending on the category, the answer
is generated differently. The answer is then automati-
cally quality checked. Unsatisfactory answers are re-
generated with a different set of LLM parameters un-
til they pass the quality check. On the one hand, the
comparative study shows comparable results to hu-
man teaching assistants on non-assignment specific
questions, combined with higher ratings for clarity
and engagement. On the other hand, the virtual teach-
ing assistant sometimes gives answers that are over-
whelming for novices. This underscores the impor-
tance of human supervision.

3 METHODOLOGY

Design science research is characterized by provid-
ing solutions to real-world problems using informa-
tion technology. It must produce a viable artifact in
the form of a model, method, or implementation that
is rigorously evaluated (Hevner and Chatterjee, 2010).

Design science research has evolved over the
last decades with hundreds of scientific publications
(Akoka et al., 2023). Recently, it found its way into
higher education in a number of projects (Apiola and
Sutinen, 2021).

Therefore, design science research fits well into
addressing the problem mentioned in Section 1. The
selected research method is Design Science Research
Methodology (DSRM), as described by Peffers et al.
(2007).

The process consists of six activities, several of
which are run through iteratively or might be omit-
ted as well as shown in Figure 1. These activities are
(Peffers et al., 2007):

1. Problem identification and motivation

2. Define the objectives

3. Design and development

AI-AFACT: Designing AI-Assisted Formative Assessment of Coding Tasks in Web Development Education

381



Figure 1: DSRM process model (Peffers et al., 2007).

4. Demonstration
5. Evaluation
6. Communication

The model allows four entry points into the pro-
cess (Peffers et al., 2007):
1. Problem-centered initiation
2. Objective-centered solution
3. Design & development centered initiation
4. Client/context initiated

The step-by-step application of DSRM ensures
that the solution found solves the problem at hand,
as numerous publications have shown, e.g. Clauss
(2024) and Neo et al. (2024). In the case of this paper,
the starting point is problem-centered.

4 APPLICATION OF DSRM

4.1 Problem Identification

The teaching of basic knowledge in HTML and CSS,
as well as integration with JavaScript, is part of sev-
eral curricula. Due to the positive impact on mo-
tivation, the use of open-ended assignments is rec-
ommended, where students develop their submissions
using their creativity.

To support students in the learning process, sub-
missions are not only assessed summatively but also
provided with extensive feedback. The goal is for
students to avoid repeating mistakes in future assign-
ments and to apply what they have learned correctly.

When reviewing submissions, different perspec-
tives must be taken: Are the files syntactically cor-
rect? Have the HTML elements been used in a se-
mantically correct way? Are the requirements speci-
fied in the assignment met? What does the generated
page look like?

If JavaScript is also part of the course content,
the questions expand: Does the JavaScript code work
correctly? Are the specified functionalities imple-
mented?

The feedback must be adapted to the students’
level of knowledge. It must be structured in such a
way that it helps students to independently correct the
noted points. Understandably, the feedback must not
contain any incorrect or misleading information.

This feedback is manually created in many
courses by the teacher reviewing the submitted code
and the resulting website. Sometimes, syntax check-
ers and similar tools are used. This process is time-
consuming and therefore limits the number of assign-
ments or the size of the group that a single teacher can
evaluate. At the same time, the errors in the submis-
sions are very similar, so the points in the feedback
are repeated.

To remedy this, an automation of the assessment
process is suggested, which detects possible errors
and generates feedback. Unfortunately, existing solu-
tions do not seem suitable as they are based on rules
or tests that must be created in advance by the teacher.
These rigid rules are only partially compatible with
open-ended assignments. The rules can only cover the
cases considered by the teacher, so some properties
of the solutions remain unconsidered in the feedback
process, and other errors do not trigger feedback.

Conversely, LLM-based approaches to the assess-
ment of programming tasks might provide natural lan-
guage feedback without having to define all possible
cases in advance. However, research also highlights
the shortcomings of such systems: The context of the
task is inadequately considered. There is misinforma-
tion in the answers. The answers can be overwhelm-
ing, especially for beginners.

Current LLM-based assessment systems focus on
the implementation of individual functions in lan-
guages like Python. Web sites implemented using

CSEDU 2025 - 17th International Conference on Computer Supported Education

382



syntactically different technologies such as HTML,
CSS, and JavaScript in multiple files are much more
complex and require different perspectives as de-
scribed above, so existing solutions cannot simply be
ported to this application area.

Given the importance of web applications in daily
life, web development education is part of many cur-
ricula. Improving the teaching in this area is therefore
a worthwhile goal.

4.2 Definition of Objectives

The requirements for the solution to the presented
problem are defined as objectives. For clarity, the ob-
jectives are grouped into three categories and num-
bered.

Base Objectives
B1. The solution must accept students’ work.

B2. The solution must provide feedback to students
on their submissions.

Domain-specific Objectives
D1. The submitted work will be checked for syntactic

correctness.

D2. The submitted work will be checked for the se-
mantically correct use of HTML tags.

D3. The submitted work will be checked for adher-
ence to code style guidelines.

D4. The submitted work will be checked for correct
implementation of the assignment requirements.

D5. The appearance of the submitted website will be
considered during the review.

D6. The functionality of the submitted website will
be considered during the review.

Quality Criteria
Q1. The quality of the feedback must be ensured.

Q2. The feedback should be consistent.

Q3. The feedback must consider the context of the
assignment. This includes the content of the
assignment itself as well as the current course
progress and the already taught content.

Q4. The use of the system must lead to a time saving
for the teacher compared to the manual review of
each submission.

4.3 Architecture of the Solution

Based on these objectives a prototype will be devel-
oped. It will implement the assessment process shown
in Figure 2, consisting of the following steps:

AI
-a

ss
is

te
d

as
se

ss
m

en
t t

oo
l

Te
ac

he
r

Le
ar

ne
r

Automated
assessment

Validation or
reassessment

Processing
feedback

FeedbackSubmitted task

Figure 2: Assessment process.

1. The task to be assessed is submitted by the learner.

2. AI-powered software makes a preliminary assess-
ment of the task. The software knows the task
definition.

3. The teacher reviews the automatic assessment.
This step ensures quality assurance, allowing the
teacher to control the feedback and add addi-
tional information or address any shortcomings
not identified by the AI.

4. The manual feedback is used to fine-tune the AI
for future automatic assessments.

5. The feedback is returned to the learner.

A more detailed view in Figure 3 shows the phases
of the data processing in the assessment tool:

1. Input. The submission of the student serves as
the input data for the workflow.

2. Preprocessing. The data is prepared for the next
phase through:

• Transformation. The file contents are normal-
ized. A parser might generate an abstract syn-
tax tree of the JavaScript files.

• Derivation. Additional data is retrieved by
calling programs or calling external APIs to
augment the submission. This may include in-
tegrating linters, validators, execution outputs,
or screenshots.

3. Processing. The raw submission, along with
the results of transformation and derivation, is
assessed by an LLM. The LLM is aware of

AI-AFACT: Designing AI-Assisted Formative Assessment of Coding Tasks in Web Development Education

383



Figure 3: Data flow.

the context, including the task definition, previ-
ous submission-feedback pairs, and other relevant
data.

4. Output. The generated feedback is delivered to
the teacher for further processing.

Processing both text and images is feasible if a
multimodal LLM is utilized at the processing phase.

4.4 Demonstration and Evaluation

Part of the DSRM process is the evaluation of the
created artifact, in this case, the architecture for a
solution. Since there is no implementation yet, the
demonstration activity is omitted. It is examined how
and to what extent the architecture can meet the re-
quired objectives.

The base objectives B1 and B2 are addressed
through integration into a Learning Management Sys-
tem (LMS) or by providing a web interface that offers
the required functionalities. This interface also pro-
vides the teacher with interaction possibilities with
the assessment tool.

The domain-specific objectives are met through
data preparation and the chosen LLM. Objectives D1
and D3 are addressed by integrating various sources
in the preprocessing stage. For D2, D4, and D6, the
understanding of the LLM is utilized, which consid-
ers the assignment and previous feedback from the
teacher. The use of a multimodal LLM enables the
fulfillment of objective D5.

To meet quality criterion Q1, a human-in-the-loop
approach is followed, ensuring that all feedback is re-
viewed by the teacher before being sent to the stu-
dent. The use of an automated system ensures Q2.

Since the LLM uses previous feedback as a basis, Q3
is fulfilled. To test the achievement of objective Q4
in implementation, analytics functions are built in to
evaluate the time expenditure.

As the system continuously learns with each sub-
mission, the hypothesis is that the effort for the
teacher will decrease over time. Testing this hypothe-
sis is part of further research.

5 DISCUSSION AND FUTURE
WORK

Following the DSRM process model, the research
questions posed in Section 1 are addressed.

The requirements for an automated assessment
tool for web development education are established
as objectives in Subsection 4.2, thereby providing an
answer to RQ1. These requirements are derived from
the problem definition, which encapsulates the find-
ings from the literature reviewed in Section 2.

In response to RQ2, the architecture of a solution
is detailed in Subsection 4.3. This section illustrates
the processing of submissions and outlines the essen-
tial components to meet the previously specified re-
quirements.

In the subsequent iteration of the DSRM, the focus
will be on selecting an appropriate LLM that demon-
strates a foundational “understanding” of the web
technologies–namely HTML, CSS, and JavaScript–
and their interdependent functionality. Current
benchmarks for evaluating LLMs are insufficient for
these technologies, necessitating the development of
a new benchmark. This benchmark will be tailored

CSEDU 2025 - 17th International Conference on Computer Supported Education

384



to assess the competencies essential for web develop-
ment education and will facilitate the comprehensive
evaluation of LLMs.

Upon identifying a suitable LLM, a prototype
encapsulating the proposed process will be imple-
mented. This prototype will undergo testing through
hypothetical scenarios created by the authors, draw-
ing upon substantial teaching experience in the field.
Subsequently, as part of an advanced iteration, there
are plans to integrate the developed system into uni-
versity courses to evaluate the efficacy in real-life
teaching.

6 CONCLUSIONS

Manually assessing student submissions is a time-
consuming task. For this reason, tools that automate
the assessment and thus simplify the teacher’s work
have long been used in computer science. However,
these methods reach their limits with complex tasks,
especially with open-ended tasks that can be solved
creatively by the students. Homework in web devel-
opment education often falls into this category.

In order to solve this problem, this paper presents
an architecture for automated assessment. It is based
on the use of Large Language Models (LLMs), which
in recent years have penetrated many areas of soft-
ware development as well as education, where they
can cope with numerous tasks.

The approach using an established methodology,
specifically the Design Science Research Methodol-
ogy (DSRM), demonstrates how tools for the educa-
tional sector can be systematically created. DSRM
was developed from the literature available at the time
and can be considered comprehensive. It ensures that
no steps are overlooked. The accompanying docu-
mentation of each step increases the traceability of the
research project. The iterative approach allows the so-
lution to be built and evaluated step by step.

In the first iteration documented here, the problem
to be solved is described. Objectives for the solution
are derived from the problem statement, thus defining
the requirements for an automated assessment tool.
The artifact created is an architectural design that is
evaluated against the objectives.

The authors’ vision is a tool that helps teachers
to give more consistent feedback in less time. The
architectural design lays the groundwork for the
development of such a tool, ensuring it meets the
defined requirements and establishes the foundation
for later evaluations. A critical metric for these
evaluations will be the quantification of time savings

for instructors, which stands as a principal ob-
jective of automation.

In conclusion, this research highlights the need for
automated assessment tools for web development ed-
ucation. Furthermore, it has showcased the efficacy of
design science research as a robust approach for tack-
ling complex use cases, affirming its value as method-
ological framework in the field of educational tech-
nology.

ACKNOWLEDGEMENTS

The authors would like to thank the University of Ap-
plied Sciences Burgenland, the University of Vienna
and the UniVie Doctoral School Computer Science
(DoCS) for their support and contribution to this re-
search.

DeepL, DeepL Write, ChatGPT and Paperpal pro-
vided help in translating and refining the text.

REFERENCES
Akoka, J., Comyn-Wattiau, I., and Storey, V. C. (2023).

Design Science Research: Progression, Schools of
Thought and Research Themes. In Gerber, A. and
Baskerville, R., editors, Design Science Research for
a New Society: Society 5.0, volume 13873, pages
235–249. Springer Nature Switzerland, Cham.

Anishka, Sethi, D., Gupta, N., Sharma, S., Jain, S., Sing-
hal, U., and Kumar, D. (2024). TAMIGO: Empower-
ing Teaching Assistants using LLM-assisted viva and
code assessment in an Advanced Computing Class.
arXiv:2407.16805 [cs.HC].

Apiola, M. and Sutinen, E. (2021). Design science research
for learning software engineering and computational
thinking: Four cases. Computer Applications in Engi-
neering Education, 29(1):83–101.

Azaiz, I., Kiesler, N., and Strickroth, S. (2024). Feedback-
Generation for Programming Exercises With GPT-4.
In Proceedings of the 2024 on Innovation and Tech-
nology in Computer Science Education V. 1, pages
31–37, Milan Italy. ACM.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li,
Y., Lundberg, S., Nori, H., Palangi, H., Ribeiro,
M. T., and Zhang, Y. (2023). Sparks of Artificial
General Intelligence: Early experiments with GPT-4.
arXiv:2303.12712 [cs.cL].

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brock-
man, G., Ray, A., Puri, R., Krueger, G., Petrov, M.,
Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray, S.,
Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings,
D., Plappert, M., Chantzis, F., Barnes, E., Herbert-
Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak,

AI-AFACT: Designing AI-Assisted Formative Assessment of Coding Tasks in Web Development Education

385



N., Tang, J., Babuschkin, I., Balaji, S., Jain, S., Saun-
ders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,
J., Misra, V., Morikawa, E., Radford, A., Knight, M.,
Brundage, M., Murati, M., Mayer, K., Welinder, P.,
McGrew, B., Amodei, D., McCandlish, S., Sutskever,
I., and Zaremba, W. (2021). Evaluating Large Lan-
guage Models Trained on Code. arXiv:2107.03374
[cs.LG].

Clauss, A. (2024). Facilitating Competence-Oriented Qual-
ification in New Work: Evaluation of a Platform Pro-
totype:. In Proceedings of the 16th International
Conference on Computer Supported Education, pages
659–668, Angers, France. SCITEPRESS - Science
and Technology Publications.

Duong, H.-T. and Chen, H.-M. (2024). ProgEdu4Web: An
automated assessment tool for motivating the learning
of web programming course. Computer Applications
in Engineering Education, 32(5):e22770.

Fu, X., Peltsverger, B., Qian, K., Tao, L., and Liu, J.
(2008). APOGEE: Automated project grading and in-
stant feedback system for web based computing. ACM
SIGCSE Bulletin, 40(1):77–81.

Gabbay, H. and Cohen, A. (2024). Combining LLM-
Generated and Test-Based Feedback in a MOOC for
Programming. In Proceedings of the Eleventh ACM
Conference on Learning @ Scale, pages 177–187, At-
lanta GA USA. ACM.

Hevner, A. and Chatterjee, S. (2010). Design Research in
Information Systems: Theory and Practice, volume 22
of Integrated Series in Information Systems. Springer
US, Boston, MA.

Hollingsworth, J. (1960). Automatic graders for pro-
gramming classes. Communications of the ACM,
3(10):528–529.

Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., Luo,
X., Lo, D., Grundy, J., and Wang, H. (2024). Large
Language Models for Software Engineering: A Sys-
tematic Literature Review. arXiv:2308.10620 [cs.SE].

Insa, D., Pérez, S., Silva, J., and Tamarit, S. (2021). Semi-
automatic generation and assessment of Java exercises
in engineering education. Computer Applications in
Engineering Education, 29(5):1034–1050.

Leenknecht, M., Wijnia, L., Köhlen, M., Fryer, L., Rikers,
R., and Loyens, S. (2021). Formative assessment as
practice: The role of students’ motivation. Assessment
& Evaluation in Higher Education, 46(2):236–255.

Li, A., Wu, J., and Bigham, J. P. (2023). Using LLMs
to Customize the UI of Webpages. In Adjunct Pro-
ceedings of the 36th Annual ACM Symposium on User
Interface Software and Technology, pages 1–3, San
Francisco CA USA. ACM.

Liu, M. and M’Hiri, F. (2024). Beyond Traditional Teach-
ing: Large Language Models as Simulated Teaching
Assistants in Computer Science. In Proceedings of the
55th ACM Technical Symposium on Computer Science
Education V. 1, pages 743–749, Portland OR USA.
ACM.

Messer, M., Brown, N. C. C., Kölling, M., and Shi, M.
(2023). Automated Grading and Feedback Tools
for Programming Education: A Systematic Review.

ACM Transactions on Computing Education, page
3636515.

Muuli, E., Papli, K., Tõnisson, E., Lepp, M., Palts, T., Su-
viste, R., Säde, M., and Luik, P. (2017). Automatic
Assessment of Programming Assignments Using Im-
age Recognition. In Lavoué, É., Drachsler, H., Ver-
bert, K., Broisin, J., and Pérez-Sanagustı́n, M., edi-
tors, Data Driven Approaches in Digital Education,
volume 10474, pages 153–163. Springer International
Publishing, Cham.

Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S., Us-
man, M., Akhtar, N., Barnes, N., and Mian, A. (2024).
A Comprehensive Overview of Large Language Mod-
els. arXiv:2307.06435 [cs.CL].

Neo, G., Moura, J., Almeida, H., Neo, A., and Fre-
itas Júnior, O. (2024). User Story Tutor (UST) to
Support Agile Software Developers:. In Proceedings
of the 16th International Conference on Computer
Supported Education, pages 51–62, Angers, France.
SCITEPRESS - Science and Technology Publications.

Nguyen, B.-A., Ho, K.-Y., and Chen, H.-M. (2020). Mea-
sure Students’ Contribution in Web Programming
Projects by Exploring Source Code Repository. In
2020 International Computer Symposium (ICS), pages
473–478, Tainan, Taiwan. IEEE.

Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chat-
terjee, S. (2007). A Design Science Research Method-
ology for Information Systems Research. Journal of
Management Information Systems, 24(3):45–77.

Sharmin, S. (2022). Creativity in CS1: A Literature Review.
ACM Transactions on Computing Education, 22(2):1–
26.

Shute, V. J. (2008). Focus on Formative Feedback. Review
of Educational Research, 78(1):153–189.

Siochi, A. C. and Hardy, W. R. (2015). WebWolf: Towards
a Simple Framework for Automated Assessment of
Webpage Assignments in an Introductory Web Pro-
gramming Class. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Educa-
tion, pages 84–89, Kansas City Missouri USA. ACM.

Smolić, E., Pavelić, M., Boras, B., Mekterović, I., and
Jagušt, T. (2024). LLM Generative AI and Students’
Exam Code Evaluation: Qualitative and Quantitative
Analysis. In 2024 47th MIPRO ICT and Electron-
ics Convention (MIPRO), pages 1261–1266, Opatija,
Croatia. IEEE.

CSEDU 2025 - 17th International Conference on Computer Supported Education

386


