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Abstract: This systematic review explores the integration of neuroscience and education, focusing on physiological 
monitoring technologies such as Electrodermal Activity (EDA), Heart Rate (HR), and Skin Temperature (ST). 
These metrics, facilitated by wearable devices and machine learning models, provide real-time insights into 
student engagement, emotional states, and academic performance. The analysis synthesizes findings from 
recent studies, highlighting the transformative potential of physiological measures in creating adaptive, 
student-centered learning environments. The review examines the use of physiological monitoring in 
education for stress assessment, motivation enhancement, and academic performance optimization, while also 
addressing challenges in reliability, ethics, and implementation. By identifying existing gaps, it proposes 
directions for future research to refine these tools and promote their widespread adoption in educational 
contexts. These advancements underscore the role of physiological insights in fostering emotional well-being 
and optimizing teaching practices, marking a significant step toward evidence-based, neuroeducation-
informed strategies.  

1 INTRODUCTION 

The intersection of neuroscience and education offers 
a promising avenue for optimizing learning 
environments. Understanding physiological 
processes allows educators to tailor teaching methods 
to students’ cognitive and emotional needs. Key 
metrics such as Electrodermal Activity (EDA), Heart 
Rate (HR), and Skin Temperature (ST) have emerged 
as critical tools for real-time insights into student 
engagement, stress, and emotional states. Leveraging 
these metrics, studies have highlighted the potential 
of physiological monitoring in enhancing teaching 
and learning practices. These dynamic measures hold 
the potential to enhance learning outcomes through a 
deeper understanding of student behavior and 
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performance (Amaral & Fregni, 2021). Furthermore, 
Moura et al. (2022) highlight the imperative for 
educational and corporate strategies to address skill 
gaps and workforce demands, particularly within the 
context of Industry 4.0, which necessitates a blend of 
technical expertise, creativity, and collaboration. 

Despite growing research, a comprehensive 
review of physiological monitoring in education is 
lacking. This study examines its applications, 
benefits, challenges, and reliability in adaptive 
learning. A systematic search in major databases 
identified peer-reviewed studies on EDA, HR, and ST 
as engagement indicators. 

Relevant studies applying physiological 
monitoring in education were selected, while non-
educational research was excluded. Extracted data 
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included study design, sample characteristics, 
physiological measures, and key findings. A 
qualitative synthesis identified trends and gaps, with 
a methodological appraisal assessing data reliability. 

This review critically evaluates physiological 
monitoring in education, highlighting its potential, 
limitations, and integration strategies. 

1.1 Physiological Metrics in Education 

EDA has been extensively studied as a reliable 
indicator of academic performance and engagement. 
For instance, Horvers et al. (2021) highlighted its 
efficacy in monitoring and predicting students’ 
participation in academic tasks. Building on this, 
Abromavičius et al. (2023) demonstrated the utility of 
combining EDA, HR, and ST metrics to predict 
academic performance, emphasizing the importance 
of feature selection and advanced modeling 
techniques in educational research. 

The application of neurophysiological metrics 
extends beyond engagement to address motivation 
and cognitive retention. Sánchez-Carracedo et al. 
(2021) demonstrated that neuroscience-based 
strategies can enhance students’ motivation and 
attention, leading to improved conceptual retention. 
Similarly, Khan et al. (2019) examined the 
correlations between physiological responses, such as 
EDA and ST, and their impact during high-pressure 
academic tasks, providing evidence of their relevance 
in challenging learning environments. 

1.2 Multimodal and Emotional 
Engagement Approaches 

Research has increasingly explored the value of 
multimodal approaches in active learning scenarios. 
Villanueva et al. (2018) identified the potential of 
combining EDA with other modalities to enhance 
engagement and academic performance in active 
learning contexts. Meanwhile, Loderer et al. (2020) 
established a link between emotional engagement and 
improved outcomes in technology-based learning 
environments. These findings align with the work of 
Thammasan et al. (2020), who demonstrated the 
feasibility of monitoring physiological signals such as 
EDA and HR through wearable sensors, making these 
insights more accessible in real-time educational 
settings. 

Integrating emotional and physiological metrics 
into pedagogical strategies has been shown to enrich 
learning experiences. For example, Eliot and Hirumi 
(2019) advocated for the inclusion of emotional 
engagement measures to enhance educational 

practices and foster more personalized learning 
environments. Similarly, Darvishi et al. (2022) 
highlighted the potential of neurophysiological 
measures to address individual cognitive and 
emotional needs, thereby improving overall 
educational practices. 

Collectively, these studies underscore the critical 
role of physiological insights in advancing the field 
of neuroeducation. By leveraging neurophysiological 
data, educators can create adaptive, student-centered 
environments that promote both academic success 
and emotional well-being. This research highlights 
the intersection of neuroscience and education as a 
fertile ground for innovation, offering a robust 
framework to enhance traditional and technology-
mediated learning. 

2 PHYSIOLOGICAL MEASURES 
IN EDUCATION 

2.1 Electrodermal Activity 

EDA, a measure of sympathetic nervous system 
activity, offers valuable insights into emotional 
arousal and cognitive states by quantifying variations 
in skin conductance, typically measured in 
microsiemens (μS). This metric has gained 
prominence in education research for its ability to 
provide objective, real-time data on student 
engagement, stress, and emotional responses. 

2.1.1 Advancements in EDA Measurement 
Techniques 

Several studies have contributed to refining EDA 
measurement methodologies. Quintero et al. (2016b) 
introduced the TVSymp index, utilizing time-
frequency spectral analysis to enhance the 
consistency of sympathetic activity assessments. 
Similarly, Quintero et al. (2016a) demonstrated the 
significance of low-frequency EDA components 
(0.045–0.15 Hz) in evaluating responses to cognitive 
and physical stressors. 

Geršak and Drnovšek (2020) developed a 
simulator to improve the precision of metrological 
evaluations for EDA devices, advancing the 
reliability of EDA measurements. Additionally, 
Hernando-Gallego et al. (2017) proposed the 
SparsEDA algorithm, which improved computational 
efficiency and interpretability of EDA data. 

Nourbakhsh et al. (2012) validated the 
relationship between EDA and cognitive load, 
highlighting spectral features' ability to differentiate 
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task difficulties. These advancements have 
significantly enhanced the accuracy and utility of 
EDA measurements, making them more practical for 
educational and non-educational applications alike. 

2.1.2 Applications in Stress and Emotional 
Analysis 

EDA has been particularly useful in analyzing stress 
and emotional responses. Lui and Du (2018) 
developed a method for psychological stress 
detection based solely on EDA, achieving an 81.82% 
recognition rate using Fisher projection and linear 
discriminant analysis. 

Sánchez-Reolid et al. (2020) combined EDA with 
other physiological signals, achieving up to 99.69% 
accuracy in stress detection using neural networks 
and Adaboost algorithms. Villarejo et al. (2012) 
created a wearable stress sensor based on galvanic 
skin response (GSR), demonstrating a 76.56% 
success rate. Malathi et al. (2018) extended the 
application of EDA to road safety, developing a 
device for real-time drowsiness detection in drivers. 

Poh et al. (2010) validated wearable sensors for 
continuous EDA assessment, identifying consistent 
patterns of sympathetic modulation during daily 
activities. These studies underscore EDA's role in 
stress monitoring and its broader applicability in 
diverse contexts beyond education. 

2.1.3 EDA in Educational Contexts 

In educational environments, EDA has demonstrated 
significant potential for enhancing teaching and 
learning practices. Di Lascio et al. (2018) used 
wearable EDA sensors to distinguish engaged 
students from disengaged ones, achieving 81% recall 
using support vector machines (SVM). 

Villanueva et al. (2019) explored EDA responses 
in academic mentoring settings, revealing the 
influence of identity on physiological responses. Reid 
et al. (2020) combined EDA data with behavioral 
analyses to identify key factors affecting academic 
performance, demonstrating the value of integrating 
physiological and qualitative data. 

Pijeira-Díaz et al. (2018) employed EDA to detect 
moments of high and low engagement in classroom 
settings, offering insights into students' emotional and 
cognitive states. Villanueva et al. (2018) incorporated 
EDA into multimodal assessments during 
engineering activities, showing increased EDA levels 
during active, collaborative tasks. 

Potter et al. (2019) highlighted EDA’s ability to 
gauge student engagement across various teaching 
methodologies, emphasizing its utility for real-time 

feedback. These studies illustrate the versatility of 
EDA as a tool for assessing engagement, emotional 
states, and the effectiveness of educational 
interventions. Its integration into multimodal 
approaches has proven especially valuable in active 
and collaborative learning scenarios. 

2.1.4 Implications for Pedagogical Strategies  

The application of EDA in education provides a non-
invasive and objective method for monitoring 
students' physiological responses. By bypassing the 
biases often associated with self-reported measures 
(Caruelle et al., 2019), EDA enables educators to 
tailor pedagogical strategies more effectively. From 
real-time feedback to long-term performance 
monitoring, EDA contributes to a nuanced 
understanding of student engagement and learning 
outcomes. 

The growing body of research on EDA highlights 
its relevance in neuroeducation, offering robust 
methods for measuring engagement and emotional 
states. By integrating these insights into teaching 
practices, educators can create adaptive, data-driven 
environments that enhance both academic 
performance and emotional well-being. 

2.2 Heart Rate 

HR serve as indicators of physiological arousal and 
stress, providing valuable insights into students' 
engagement and emotional states. Schneider et al. 
(2020) explored HR synchronization among 
collaborators during programming tasks, revealing 
positive correlations between synchronization and 
task performance. This study highlights the potential 
of HR metrics as objective measures of collaboration 
quality and engagement in group activities. 

Similarly, Ghannam et al. (2020) emphasized the 
role of HR monitoring in neuroengineering education, 
demonstrating how wearable technologies can 
enhance learning experiences by offering real-time 
physiological feedback. 

2.2.1 Applications in Active Learning and 
Physical Engagement 

Research has also focused on the role of HR in active 
learning contexts. Darnell and Krieg (2019) analyzed 
HR fluctuations during active learning sessions, 
identifying strong correlations between physiological 
engagement and academic interaction. Their findings 
underscore the importance of HR monitoring as a tool 
for assessing and optimizing engagement in dynamic 
educational settings. 
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Wang and Liu (2019) extended this research to 
physical education, utilizing wearable devices to 
monitor HR and provide real-time feedback. Their 
findings revealed significant differences in 
engagement levels among participants, showcasing 
the potential of wearable technology in fostering 
personalized education strategies and enhancing 
student participation. 

2.2.2 Consistency and Contextual Analysis 
of HR and HRV 

The consistency of HR and and Heart Rate Variability 
(HRV) measures has also been a topic of 
investigation. Quintero and Bolkhovsky (2019) 
examined these metrics under controlled conditions, 
identifying low HRV indices as reliable markers of 
physiological engagement. Their research highlights 
the utility of HRV as a robust measure for evaluating 
focus and stress levels in educational settings. 
Additionally, Gao et al. (2020) combined HR data 
with environmental variables to predict student 
engagement in diverse classroom environments. 
Their work demonstrates the value of integrating 
physiological and contextual data to improve 
teaching methods and outcomes. 

Collectively, these studies establish HR and HRV 
as essential tools for understanding and enhancing 
educational outcomes. By integrating these measures 
into classroom practices, educators and researchers 
can gain a deeper understanding of physiological 
engagement, allowing for more targeted and effective 
interventions that enhance both academic 
performance and emotional well-being. 

2.3 Skin Temperature 

ST is a subtle but impactful physiological indicator, 
reflecting the body’s thermoregulation processes, 
which are influenced by emotional and environmental 
factors. 

Studies such as Pérez et al. (2018) have 
demonstrated significant correlations between ST and 
academic performance, particularly under stress. This 
research highlights the relevance of ST as a non-
invasive marker for understanding students’ 
emotional and cognitive states during high-pressure 
academic activities. However, Terriault et al. (2021) 
identified challenges in real-time ST monitoring 
during educational activities, particularly due to 
external environmental factors that can affect 
measurement accuracy. 

2.3.1 Wearable Technology and Real-Time 
Monitoring 

The development of wearable technology has 
advanced the continuous monitoring of ST, 
facilitating its application in educational settings. 
Yoon et al. (2016) emphasized the utility of wearable 
sensors, demonstrating their effectiveness for real-
time stress detection and intervention. Their findings 
showcase the potential of wearable patches for long-
term ST monitoring, enabling educators to better 
understand students' physiological responses in 
diverse learning environments. Additionally, Pérez et 
al. (2018) explored the application of wearable 
devices in assessing stress levels among students, 
finding significant correlations between ST and 
academic performance during high-stress tasks. 

2.3.2 Multimodal Approaches Combining 
Skin Temperature 

Combining ST with other physiological measures has 
further enhanced its predictive power in 
understanding emotional and cognitive states. 
Rodríguez-Arce et al. (2020) demonstrated that 
integrating ST with metrics such as HR and EDA can 
accurately predict stress and anxiety levels in 
academic settings. This multimodal approach 
provides a more comprehensive understanding of 
how physiological signals interact, offering insights 
into student behavior and well-being. These findings 
underscore the critical role of ST as an indicator of 
emotional and physiological states, with practical 
implications for creating adaptive and supportive 
learning environments. By leveraging advances in 
wearable technology and combining ST with other 
physiological measures, educators can develop 
strategies that address students' emotional needs, 
enhance academic performance, and foster a more 
inclusive and responsive educational experience. 

3 METHODOLOGICAL 
ADVANCEMENTS 

3.1 Wearable Technology 

The integration of wearable devices, such as the 
Empatica E4, has revolutionized physiological 
monitoring in educational contexts by enabling 
unobtrusive and real-time data collection. These 
devices capture multimodal metrics, including EDA, 
HR, and ST, making them highly applicable for 
classroom environments. 
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3.1.1 Physiological Monitoring and Data 
Collection 

Research by Rodic-Trmcic et al. (2016) emphasized 
the role of wearable solutions in assessing 
physiological arousal and engagement within 
classroom settings. Their findings highlighted the 
utility of Skin Conductance Response (SCR) and HR 
data for monitoring stress and underscored the 
importance of mobile assessment systems in 
delivering continuous feedback to improve 
educational quality. Building on this, Lu et al. (2017) 
proposed a framework leveraging widely available 
wearable devices to monitor basic student actions and 
infer engagement levels through sensors such as 
accelerometers and HR monitors. This framework 
demonstrated how wearable technology can capture 
both physiological and behavioral data to enhance the 
understanding of student dynamics. 

The study by Domínguez-Jiménez et al. (2020) 
advanced the application of wearable devices by 
integrating GSR and Photoplethysmogram (PPG) 
signals for emotion recognition, achieving a precision 
rate of up to 100%. Pérez et al. (2018) also 
highlighted the practical utility of wearable sensors 
for real-time stress monitoring among students, 
demonstrating their capacity to support adaptive 
educational strategies. Similarly, Yoon et al. (2016) 
contributed to the development of flexible wearable 
patches capable of continuously monitoring EDA, 
HR, and ST, providing a robust solution for long-term 
use in educational settings. 

3.1.2 Adaptive Interventions and 
Personalized Education 

Rodríguez-Arce et al. (2020) demonstrated the 
reliability of wearable devices in accurately predicting 
stress and anxiety levels, particularly in high-pressure 
academic environments. Their findings underscored 
the robustness of wearable technology in measuring 
physiological responses critical for student well-being. 
Gao et al. (2020) extended this research by integrating 
wearable devices with environmental data to enhance 
engagement predictions. This approach not only 
provided more comprehensive insights but also offered 
actionable data to educators for tailoring interventions 
to individual student needs. These methodological 
advancements illustrate the transformative potential of 
wearable technology in modern education. By enabling 
continuous, precise, and real-time monitoring of 
physiological and contextual data, these devices are 
paving the way for a more adaptive, personalized, and 
effective educational experience. 

3.2 Machine Learning Integration 

Machine learning (ML) techniques have 
revolutionized the analysis of physiological data, 
enabling the development of predictive models for 
student engagement and academic performance. For 
example, Pérez et al. (2018) demonstrated how 
combining ML algorithms with multimodal 
physiological data could effectively detect stress, 
highlighting the potential of these techniques in 
educational settings. Similarly, Cain and Lee (2016) 
applied ML methods to Makerspace activities, 
identifying moments of high engagement by 
correlating them with peaks in EDA and HR data. 
Kanna et al. (2018) showcased a practical integration 
of wearable sensors in engineering education, 
allowing students to analyze their own physiological 
data, such as ECG signals, while learning signal 
processing techniques. 

3.2.1 Machine Learning for Student 
Performance Prediction 

Supervised learning techniques have proven 
particularly effective in predicting student 
performance. Rastrollo-Guerrero et al. (2020) 
demonstrated the utility of Support Vector Machines 
(SVM), achieving high accuracy in performance 
prediction. Simjanoska et al. (2014) expanded this 
application by using ML algorithms to develop 
adaptive e-Learning strategies, ensuring targeted 
learning outcomes while reducing random guessing. 
Ensemble methods, such as RealAdaBoost combined 
with J48, were shown by Imran et al. (2019) to 
improve model precision, achieving a classification 
accuracy of 95.78%. Walsh and Mahesh (2017) 
integrated behavioral and traditional academic data to 
predict outcomes early, enabling timely interventions 
that significantly improved learning experiences. 

3.2.2 Leveraging Diverse Machine Learning 
Techniques 

Various ML algorithms have been applied to enhance 
prediction models across educational settings. Pavani 
et al. (2017) highlighted Decision Tree (DT) 
algorithms, such as C4.5, for their accessibility and 
effectiveness in predicting academic performance. 

Shanthini et al. (2018) demonstrated the potential 
of ensemble methods, including AdaBoost and 
Bagging, achieving accuracy rates of 97.6%. Yan and 
Liu (2020) validated the superiority of stacking 
models, which combine algorithms like Random 
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Forests (RF), SVM, and AdaBoost, to improve 
predictive accuracy 

 Ofori et al. (2020) incorporated socio-economic 
factors into their ML models, revealing significant 
impacts on academic outcomes, while Naicker et al. 
(2020) compared Linear SVM (LSVM) with other 
algorithms to identify its effectiveness across diverse 
student demographics. 

3.2.3 Early Identification and Adaptive 
Learning Systems 

ML has also been employed for early identification of 
at-risk students. Wakelam et al. (2019) applied RF 
and K-Nearest Neighbors (KNN) algorithms in small-
class settings to predict academic challenges, 
achieving high reliability. Hussain et al. (2018) 
demonstrated ML integration in real-time learning 
systems, enabling continuous feedback and adaptive 
interventions. Polyzou and Karypis (2023) 
emphasized the use of Gradient Boosting and RF 
models for early warning systems, while Pang et al. 
(2017) achieved high accuracy in graduation 
predictions by incorporating psychopedagogical 
variables into SVM-based models. 

Gray and Perkins (2019) successfully identified 
at-risk students by the third week of a semester using 
ML models with a 97% accuracy rate, and Zabriskie 
et al. (2019) employed RF models to develop early-
warning systems in physics courses, leveraging 
institutional and classroom data. 

3.2.4 Machine Learning in Physiological 
Data Analysis 

Integrating ML with physiological data has opened 
new possibilities for adaptive education. Gao et al. 
(2020) combined ML techniques with wearable 
technology to analyze multimodal physiological data, 
improving engagement predictions in diverse 
learning environments. 

Yoon et al. (2016) highlighted the feasibility of 
ML models for continuous data stream analysis, 
allowing educators to tailor strategies based on real-
time feedback. Pérez et al. (2018) emphasized the 
effectiveness of ML in optimizing stress detection, 
enabling adaptive interventions to support student 
well-being. These advancements underscore the role 
of ML in leveraging physiological insights to create 
personalized and effective educational experiences, 
making adaptive learning environments more feasible 
and impactful. 

4 IMPLICATIONS FOR 
NEUROEDUCATION 

The integration of physiological measures into 
neuroeducation has opened new possibilities for 
understanding and enhancing individual learning 
processes. By addressing both cognitive and 
emotional dimensions, educators can create inclusive 
and adaptive learning environments that cater to 
diverse student needs. 

Abromavičius et al. (2023) emphasized the 
practical implications of using physiological data to 
manage stress and enhance academic outcomes, 
particularly in high-pressure contexts. Similarly, 
Schneider et al. (2020) explored physiological 
synchronization metrics as indicators of effective 
teamwork in collaborative learning environments, 
highlighting their potential to improve group 
dynamics and performance. 

Table 1 provides a comprehensive summary of 
empirical findings from 17 key studies that 
investigated the application of physiological 
measures, including EDA, HR, and ST, in educational 
contexts. These studies span diverse experimental 
settings, from traditional classrooms to e-learning 
environments, and highlight the potential of these 
metrics for monitoring engagement, stress, and 
emotional states. The table synthesizes data on 
participants, experimental conditions, and significant 
outcomes, offering valuable insights into the practical 
applications and limitations of physiological 
monitoring technologies. 

The studies summarized in Table 1 underscore the 
versatility and efficacy of physiological measures in 
enhancing educational practices. Key findings reveal 
that EDA consistently emerges as a reliable indicator 
of student engagement, as demonstrated by Di Lascio 
et al. (2018) and Villanueva et al. (2019), with 
engagement detection accuracies reaching up to 81% 
using advanced machine learning models. Similarly, 
HR and ST have been validated as complementary 
measures, particularly in stress-inducing academic 
environments, with studies such as Pérez et al. (2018) 
showcasing their predictive value in estimating stress 
levels with high precision. 

One notable trend across the studies is the 
increasing reliance on multimodal approaches that 
integrate EDA, HR, and ST to achieve more robust 
insights. For instance, Rodríguez-Arce et al. (2020) 
demonstrated a stress detection accuracy of 90% by 
combining these metrics, highlighting the synergistic 
potential of multimodal data in understanding complex 
physiological responses during academic tasks. 
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Table 1: Studies on EDA, HR, and ST in education: participants, conditions, and key findings. 

References Title Participants Stressor Results 

Abromavičiu
s et al. (2023) 

Prediction of exam scores 
using a multi-sensor 

approach for wearable 
exam stress dataset with 
uniform preprocessing 

10 
undergraduate 

students 

Exam stress 
during three 
examinations 

Physiological signals, including EDA, 
HR, and ST, revealed high predictive 

potential for exam scores with accuracy, 
AUROC, and F1-score reaching 0.9, 

0.89, and 0.87, respectively. A uniform 
preprocessing enhanced the robustness of 

signal analysis. 

Al-Awani 
(2016) 

A Combined Approach to 
Improve Supervised E-
Learning using Multi-

Sensor Student 
Engagement Analysis 

20 students E-learning 
sessions 

Correlation analysis of EDA, pulse rate, 
and facial expressions indicated 

significant potential for measuring 
engagement. Findings suggest integration 

of multi-sensor data to dynamically 
adjust educational content. 

Cain & Lee 
(2016) 

Measuring electrodermal 
activity to capture 
engagement in an 

afterschool maker program 

2 youth 
participants 

Practical 
activities in a 
makerspace 

Analysis of EDA data indicated higher 
engagement during interactive activities, 
such as presenting progress, and varied 

engagement during individual tasks.

Darnell & 
Krieg (2019) 

Student Engagement 
Assessed Using Heart Rate 

Shows No Reset 
Following Active 

Learning Sessions in 
Lectures 

15 students 

Lecture-based 
active 

learning 
sessions 

HR increased during active learning but 
returned to baseline immediately 

afterward. Demonstrated HR's limitations 
in reflecting sustained engagement post-

activity. 

Di Lascio et 
al. (2018) 

Unobtrusive Assessment 
of Students’ Emotional 

Engagement during 
Lectures Using 

Electrodermal Activity 
Sensors 

24 students 
and 9 

professors in 
41 lectures 

Emotional 
engagement 

during 
lectures 

EDA sensors identified disengaged 
students with 81% accuracy using SVM, 

highlighting the potential of EDA for 
educational feedback. 

Gao et al. 
(2020) 

n-Gage: Predicting In-
Class Emotional, 

Behavioral, and Cognitive 
Engagement in the Wild 

23 students 
(13 females 

and 10 males) 
and 6 teachers 
(4 females and 

2 males) 

Classroom 
engagement 

tasks 

Multidimensional engagement prediction 
(emotional, behavioral, and cognitive) 

using EDA, HRV, and ST achieved MAE 
of 0.788 and RMSE of 0.975. 

Highlighted the utility of wearable 
sensors for real-time engagement 

monitoring. 

Jamal & 
Kamioka 

(2019) 

Emotions Detection 
Scheme Using Facial Skin 

Temperature and Heart 
Rate Variability 

20 subjects 
(10 females 

and 10 males) 

Visual and 
auditory 
stimuli 

Emotion detection (joy, fear, sadness, and 
relaxation) using HRV and facial skin 

temperature achieved 88.75% accuracy 
with an ANN-based classifier. 

Demonstrated the reliability of HRV and 
facial skin temperature for emotion 

recognition without physical interaction.

Khan et al. 
(2019) 

Exploring relationships 
between electrodermal 

activity, skin temperature, 
and performance during 

engineering exams 

76 engineering 
students 

Exam 
difficulty and 

cognitive 
tasks 

Weak but significant correlations 
observed between EDA, ST, and exam 
difficulty index (e.g., r=0.13 for EDA; 

r=0.08 for ST). Regression models 
indicated moderate significance in 

relationships among variables.

Lu et al. 
(2017) 

A Framework for Learning 
Analytics Using 

Commodity Wearable 
Devices 

24 participants 
(11 female and 

13 male) 

Academic 
stress and 
physical 
activity 

Developed the LEARNSense framework 
integrating EDA, HR, and ST data for 

analyzing student engagement. Achieved 
F1 scores of 0.9 for classifying 

engagement states. Demonstrated 
feasibility of wearable sensors for real-

time analytics. 
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Table 1: Studies on EDA, HR, and ST in education: participants, conditions, and key findings (cont.). 
References Title Participants Stressor Results 

Nourbakhsh 
et al. (2012) 

Using galvanic skin 
response for cognitive load 
measurement in arithmetic 

and reading tasks 

25 participants 
(13 for 

arithmetic 
tasks, 12 for 

reading tasks)

Reading and 
arithmetic 
tasks of 
varying 

difficulty

Spectral features of GSR demonstrated 
high significance in cognitive load 
measurement after normalization, 

highlighting the potential of spectral 
analysis for complex cognitive tasks.

Pérez et al. 
(2018) 

Evaluation of 
Commercial-Off-The-

Shelf Wrist Wearables to 
Estimate Stress on 

Students 

12 first-year 
university 
students 

Stress-
inducing 

laboratory 
tasks and 
classroom 
activities

Protocol validated the efficacy of COTS 
wearables in capturing HR, HRV, and ST 
for stress analysis in educational settings. 
Machine learning models demonstrated 
high accuracy in estimating stress levels 

during academic tasks. 

Pijeira-Díaz 
et al. (2018) 

Profiling sympathetic 
arousal in a physics course 

how active are students 

24 high school 
students 

Advanced 
physics 

course and 
final exam 

Arousal measured via EDA positively 
correlated with academic performance (r 

= 0.66). Low arousal states were 
predominant during lectures, while 

activation significantly increased during 
the exam. 

Quintero & 
Bolkhovsky 

(2019) 

Machine learning models 
for the identification of 
cognitive tasks using 

autonomic reactions from 
heart rate variability and 

electrodermal activity 

16 participants 
(8 male, 8 
female) 

Cognitive 
tasks 

including 
vigilance and 

memory 

EDA and HRV indices enabled 
identification of cognitive tasks with 

classification accuracy up to 66% using 
machine learning models like KNN and 

SVM. 

Rodríguez-
Arce et al. 

(2020) 

Towards an Anxiety and 
Stress Recognition System 

for Academic 
Environments 

21 university 
students 

Academic 
stress tasks 

and self-
reported 
anxiety

Stress detection achieved 90% accuracy 
using k-NN on HR, skin temperature, and 

oximetry signals. Anxiety recognition 
attained 95% accuracy with SVM using 

GSR data. 

Schneider et 
al. (2020) 

Unpacking the relationship 
between existing and new 
measures of physiological 

synchrony and 
collaborative learning: a 

mixed methods study 

42 pairs of 
participants 

(84 
individuals) 

Collaborative 
tasks 

involving 
programming 

robots 

Physiological synchrony (measured via 
EDA) correlated with learning gains (r = 
0.35) and collaboration quality (r = 0.3). 
Developed a novel measure using EDA 
cycles that improved correlations with 

collaboration quality (r = 0.57).

Terriault et 
al. (2021) 

Use of electrodermal 
wristbands to measure 

students' cognitive 
engagement in the 

classroom 

8 participants 
(7 students 

and 1 
professor) 

Classes, 
workshops, 
and exams 

EDA data from Empatica E4 wristbands 
revealed engagement patterns, but 

external factors, such as physical activity 
and room temperature, complicated data 

consistency. 

Thammasan 
et al. (2020) 

A Usability Study of 
Physiological 

Measurement in School 
Using Wearable Sensors 

86 adolescents 
in schools 

Daily 
academic 
activities 

Demonstrated feasibility of EDA and HR 
measurements in school settings. 

Addressed challenges in data quality and 
preprocessing, highlighting limitations of 

generic signal processing tools.
 

Additionally, machine learning applications, as seen 
in studies like Gao et al. (2020), have further 
enhanced the predictive power of these measures, 
enabling real-time engagement and emotional 
monitoring with high accuracy. Despite these 
promising outcomes, the findings also highlight 
significant challenges. External factors, such as 
environmental conditions and physical activity, can 
affect the reliability of HR and ST measurements, as 
noted by Terriault et al. (2021). Similarly, the limited 

sample sizes in certain studies, such as Cain and Lee 
(2016), restrict the generalizability of results, 
emphasizing the need for larger-scale investigations. 
Moreover, ethical considerations surrounding the use 
of wearable devices in educational settings require 
further exploration to ensure student privacy and data 
security. 

In conclusion, the evidence presented in Table 1 
underscores the transformative potential of 
physiological measures for creating adaptive and 
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student-centered educational environments. By 
addressing current limitations and leveraging 
advancements in wearable technologies and machine 
learning, future research can pave the way for more 
inclusive and effective educational practices. 

4.1 Practical Applications of 
Physiological Insights in Education 

The use of physiological data has also been applied to 
tailor pedagogical approaches. Villanueva et al. 
(2019) demonstrated how the intersection of identity 
and physiological metrics in academic mentoring can 
address diverse student needs, fostering a more 
inclusive learning experience. 

Lee et al. (2020) exemplified the use of EDA to 
differentiate between public speaking and foreign 
language anxiety, showcasing its utility in addressing 
distinct stress contexts. Katmada et al. (2015) 
proposed a biofeedback system that integrates EDA, 
HR, and ST, highlighting its effectiveness in reducing 
anxiety through gamified educational tools. 
Furthermore, Jamal and Kamioka (2019) introduced 
an emotion detection framework using facial ST and 
HRV, achieving high accuracy without requiring 
physical interaction, thereby expanding the scope of 
non-invasive monitoring methods. 

4.2 Building Emotionally Supportive 
and Adaptive Learning 
Environments 

Physiological monitoring has proven instrumental in 
promoting emotional engagement, which is critical 
for deeper learning experiences. Loderer et al. (2020) 
demonstrated that emotional engagement, as 
measured through physiological data, fosters stronger 
connections to educational material and promotes 
long-term retention. Reid et al. (2020) highlighted the 
value of real-time feedback in identifying stress 
points during learning activities, enabling timely and 
effective interventions by educators to alleviate stress 
and maintain focus. The combination of physiological 
metrics has shown promise in creating supportive 
frameworks that improve resilience and academic 
outcomes, especially in high-stress environments. 
Rodríguez-Arce et al. (2020) explored the integration 
of EDA, HR, and ST in designing frameworks that 
support students' emotional well-being while 
fostering academic success. 

Eliot and Hirumi (2019) emphasized that 
incorporating emotional and physiological metrics 
into pedagogy enhances inclusivity and 
responsiveness to individual learner needs, paving the 

way for more equitable educational practices. These 
advancements collectively underscore the 
transformative potential of physiological monitoring 
in advancing neuroeducation. By leveraging insights 
from metrics such as EDA, HR, and ST, educators 
can develop data-driven strategies to personalize 
learning and address students' emotional and 
cognitive challenges. The application of biofeedback 
systems, emotion detection frameworks, and real-
time stress monitoring tools highlights the profound 
impact of integrating physiological insights into 
modern educational practices, ultimately promoting 
student success and well-being. 

5 CHALLENGES AND FUTURE 
DIRECTIONS 

The integration of physiological measures into 
education presents significant opportunities, yet it 
also faces notable challenges. Technical reliability 
remains a key concern, particularly for wearable 
devices measuring EDA, HR, and ST. External 
variables, such as environmental conditions and 
physical activity, can affect data accuracy, as 
highlighted by studies that emphasize the need for 
robust preprocessing techniques and adaptive 
algorithms. Moreover, variability in sensor quality 
and calibration across devices further complicates 
widespread adoption. 

The collection of physiological data in 
educational settings, especially with minors, raises 
significant ethical and privacy concerns. Effective 
data governance and security are critical. Future 
research must standardize methodologies, enhance 
sensor accuracy, and refine machine learning models 
to reduce bias in diverse environments. Large-scale, 
longitudinal studies are needed for broader validation. 
Overcoming these challenges is key to achieving 
sustainable educational innovations. 

6 CONCLUSIONS 

This review underscores the transformative potential 
of physiological measures in advancing 
neuroeducation. By leveraging metrics such as EDA, 
HR, and ST, educators can gain real-time insights into 
student engagement, stress, and emotional states, 
enabling adaptive and personalized learning 
experiences. The integration of wearable 
technologies and machine learning models enhances 
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the feasibility of implementing these approaches in 
diverse educational contexts. 

Despite the promising applications, challenges 
related to technical reliability, ethical considerations, 
and scalability remain significant. However, ongoing 
advancements in wearable technologies, multimodal 
data analysis, and standardized frameworks offer 
pathways to address these barriers. Future research 
must prioritize inclusivity, ethical transparency, and 
empirical validation to ensure the widespread 
adoption of these tools. 

In conclusion, physiological monitoring 
represents a critical innovation in fostering 
emotionally supportive, data-driven, and effective 
educational environments. By bridging neuroscience 
and pedagogy, this approach has the potential to 
revolutionize how educators understand and respond 
to the cognitive and emotional needs of learners. 
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