
Event Modeling for Reasoning of Consequences

Haroldo R. S. Silva a, Fabrı́cio H. Rodrigues b and Mara Abel c

Informatics Institute, Federal University of Rio Grande do Sul (INF-UFRGS),
Av. Bento Gonçalves, 9090 - Agronomia, Porto Alegre - RS, 91540-000, Brazil

{hrssilva, fabricio.rodrigues, marabel}@inf.ufrgs.br

Keywords: Ontology, Conceptual Modeling, Events, Reasoning, Semantic Web, OWL, SHACL.

Abstract: The modeling of events is crucial in several domains in which the temporal evolution of data supports decision-
making, but the representation limitations in the state of the art in conceptual modeling are still a barrier to
software application development. Current solutions fail to reconcile behavior expressiveness, reuse, and tech-
nological compatibility. This work considers event modeling under the approach of ontologies and focuses on
the reasoning behind inferring the consequences of events. We propose the use of rule description languages
to improve traditional ontology reasoning with interpretation capabilities of specific semantics, preserving the
utility of current technologies (by not depending on non-analyzable descriptions, either by representational,
modeling, or technological choice) while inferring in ways that are not possible with conventional axioms.
During this work, we explore solutions compatible with the Semantic Web to represent the behavior of events,
resulting in an OWL representation of an event model supported by SHACL-SPARQL inference and consis-
tency check. We demonstrate our proposition by importing the resulting model to a domain ontology of the
O&G industry and showing how the event consequences inferred affect a query over the oil flow.

1 INTRODUCTION

Ontologies are extremely useful tools for complex do-
mains where ambiguous concepts and implicit seman-
tics exist. We can apply ontologies as computational
artifacts (referred to during the remaining of this work
simply as “ontologies”) for various purposes, be it
interoperability of databases, semantic search, or in-
formation discovery through logical inference (part
of a toolset of ontologies, together with consistency
check, under the name of “reasoning”). Among the
computational representations capable of reasoning,
OWL (Web Ontology Language) is one of the most
widely used languages for ontology representation.
However, despite its expressiveness, not everything
in the world of ontologies can be represented through
it. Some representation limitations of OWL are dis-
cussed in (Keet, 2020), where other languages are ex-
plored to address these deficiencies, although such so-
lutions leave the semantic web environment.

a https://orcid.org/0009-0003-0594-4852
b https://orcid.org/0000-0002-0615-8306
c https://orcid.org/0000-0002-9589-2616

1.1 Discussion’s Approach

The utility of event reasoning spans multiple aspects,
be it extracting what events have occurred and which
are their participants, which can, for example, help
autonomous driving in its decision-making process,
mainly in such a domain where these elements are
implicitly contained in the driving environment and
cannot be directly observed (Xue et al., 2018); or
be it predicting future events, which can be done
by reasoning over the causal relationships of prior
events (Lei et al., 2019). In most cases, this reasoning
is done through specific software implementation or
by utilizing temporal logic. We will discuss a method
compatible with ontologies without requiring external
computational tools or domain-specific modeling.

This work discusses a solution to address the
shortcomings of OWL’s reasoning of temporal infor-
mation, specifically events (also called Occurrents,
Perdurants, or Processes). For this, we use the infer-
ence capability of SHACL (Shapes Constraint Lan-
guage) for event reasoning. The presented solution
focuses on inferring the consequences of event occur-
rences by proposing rules that allow OWL models to
describe how events affect their participants and the
concerned objects of the world. To define such rules,
we base our modeling on upper-level types of events

Silva, H. R. S., Rodrigues, F. H. and Abel, M.
Event Modeling for Reasoning of Consequences.
DOI: 10.5220/0013440400003929
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 27th International Conference on Enterprise Information Systems (ICEIS 2025) - Volume 2, pages 71-82
ISBN: 978-989-758-749-8; ISSN: 2184-4992
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

71



based on ontological conservation (Rodrigues et al.,
2020) to not create undesired logical consequences.

2 BACKGROUND

This study requires an understanding of what an on-
tology is, how ontologies are computationally treated,
and how to represent events in an ontology. For Com-
puter Science, an ontology is a formal specification
of a shared conceptualization of reality (Studer et al.,
1998). Computationally, this formalism is translated
into conceptual models, traditionally represented in
RDF/XML (Resource Description Framework) for-
mat, but with a wide range of alternative formats,
most of which are standardized by the W3C.

2.1 Events in Ontology

Ontologies can represent both entities that exist en-
tirely at each moment they exist, called Continu-
ants or Endurants, and entities that exist in tempo-
ral parts, not being entirely present at any single mo-
ment in time, known as Events, Occurrents, or Per-
durants (Guizzardi et al., 2013). This view also cul-
minates in events having different temporal parts at
different times, such that, at present, some of their
proper parts can be missing (Masolo et al., 2003).

Another important concept for events is partici-
pation: events are entities that involve continuants
as participants (Rodrigues and Abel, 2019; Bennett,
2002; Davidson, 1969), besides being entities directly
related to time, they derive their spatial characteristics
from their participants (Quinton, 1979).

We will refer to things that happen in time with
the participation of continuants as Events. Although
this definition is unclear as to what it is for some-
thing to happen, formalizing this definition is outside
the scope of this work. For the sake of the reason-
ing approach we present, the notion about what can
be said when an event happens is more interesting,
as such, we will lean towards the definition presented
in (Guizzardi et al., 2013), where events are transi-
tions between situations that transform a portion of
reality, although we will be very lenient on the need
of representing such situations directly. Still follow-
ing (Guizzardi et al., 2013)’s definitions, events exis-
tentially depend on objects and can be either atomic,
and directly depend on an object, or complex, and di-
rectly depend on their proper parts (and indirectly on
the objects of those parts).

2.2 Ontologies and the Semantic Web

The Semantic Web is an extension of the World Wide
Web where information is given well-defined mean-
ing (Berners-Lee et al., 2001), in this sense, the role
of ontologies on semantic interoperability is of great
interest in the semantic web. Given this circumstance,
various representation languages, such as Terse RDF
Triple Language (Turtle) and Web Ontology Lan-
guage (OWL), were created and formalized for use
in the Semantic Web. Currently, the OWL format is
widely used in applications. Its variations that support
Description Logic are important as they allow reason-
ing for inferences in the specified model (Horrocks
et al., 2003). In the Semantic Web, RDF, RDFS, and
OWL represent an evolutionary trend (culminating
in OWL) of a simple graph reference model; a sim-
ple vocabulary and axioms for object-oriented mod-
eling; and knowledge-based oriented constructs and
axioms (Ding et al., 2007).

We will focus this work’s proposition on techno-
logical compatibility, given the importance of the Se-
mantic Web and, proportionally, OWL in it. As such,
we explore possible implementations that can be ap-
plied without specific technologies that would con-
flict with the environment created by the Semantic
Web. We will abstain from utilizing technologies not
standardized by the W3C. With this in mind, the pro-
posed solution to the problem we tackle during this
work (reasoning applied to event consequences) will
require that we model our events and implement our
reasoning approach through some preexisting techno-
logical solution of the Semantic Web.

3 RELATED WORKS

This section compares several technological solutions
that deal with events from a reasoning standpoint. In
the ontology state-of-the-art, the modeling of events
is receiving plentiful attention, with widely adopted
ontologies like UFO-B (Guizzardi et al., 2013) and
BFO (Otte et al., 2022) offering constructs for oc-
curent representations. However, it is rare to find
technological approaches that implement reasoning
solutions to complement standard OWL capabilities
for event information extraction through inference.
Table 1 summarizes the comparison made, given the
following criteria:

• Technology Compatibility. The ability of the so-
lution to integrate with the already widely adopted
Semantic Web technological stack. This criterion
can assume some value between None, describing
a solution that does not utilize the technological

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

72



stack; Partial, where the solution adopts the tech-
nological stack but increments it in some way; and
Full, where the proposed solution only utilizes
technologies available for the Semantic Web. This
also means we cannot categorize software solu-
tions as Full under this criteria.

• Event Coverage. The capacity of a solution to
represent (or not represent) a broad selection of
events. This criterion can assume some value
between Specific, where the solution works only
for the set of events demonstrated by the authors;
Strict, where the solution works for a set of events
bound by strict rules; and Broad, where the solu-
tion covers a wide set of events, generally bound
by an undefined upper limit. Since this criterion
is subjective, we will adopt the following rule as
the separation line between Strict and Broad: if
the solution can only describe events from its do-
main, it is Strict, if we can extrapolate the solution
to other domains, or it is domain agnostic, the so-
lution is Broad.

• Ontological Commitment. How specific is the
ontological commitment of the proposed solution,
that is, how committed the solution is to a spe-
cific worldview. To define this, we adopt a min-
imum set of requirements that describe an event:
an event can have Continuants as participants, an
event exists in time, and a description of events
does not make additional assumptions about the
role of Time in the model. This criterion can as-
sume some value between Loose, where the solu-
tion is loosely committed, and we can apply it to
different worldviews that adopt our minimum cri-
teria; Half, describing a solution that enforces its
worldview to some aspect of the world, exceed-
ing our minimum criteria; and Full, describing a
solution that only works when fully enforcing its
worldview, which, in most cases, imply the adop-
tion of a well-founded top-level Ontology.

• Domain. What domain does the solution apply to,
or whether it is agnostic. This criterion is closely
related to Event coverage.

3.1 Creation, Destruction and
Modification Events

Events regarding the creation, destruction and mod-
ification of entities are topics of discussion in ontol-
ogy modeling. UFO explores such concepts through
the specialization of Participation (as subclasses of
event) in object creation, object destruction and ob-
ject change (Benevides et al., 2019; Guizzardi et al.,

2016). These definitions brace themselves in the reifi-
cation of situations, in which creation events require
that a created object is not present in the initial situa-
tion of the event and must be present in the final situ-
ation of the event; destruction events are the opposite,
where the object is present in the initial situation of
the event, but not in its final; and modification events
require that the object is present throughout the situa-
tions, but the properties of the object have changed.

Earlier versions of BFO also contemplated these
types of events, in this case, by specializations of the
inverse relation to participation, involvement. The re-
lations that contributed to describing such events were
creation, when an event created a continuant; destruc-
tion, when an event destroyed a continuant; sustain-
ing in being, when the event collaborated to the con-
tinued existence of the continuant; and degradation,
when the event collaborated for the continuants even-
tual destruction (Smith and Grenon, 2005).

3.2 Current Limitations

Although the use of rule-based reasoning proves itself
useful to events (Padilla-Cuevas et al., 2021; Mepham
and Gardner, 2009; Zhong et al., 2012; Anicic et al.,
2011; Li et al., 2019; Pedrinaci et al., 2008), some
works end up, either extending semantic web avail-
able engines (Mepham and Gardner, 2009; Li et al.,
2019), utilizing non-standard (again, for the seman-
tic web) rule languages (Anicic et al., 2011; Pedrinaci
et al., 2008) or implementing a specific reasoner (Li
et al., 2020). When the proposed solution is fully
compatible with the semantic web (Padilla-Cuevas
et al., 2021), it does not propose a general model that
works in different domains.

The model by (Ermolayev et al., 2008) is a solid
event-focused ontology that relies solely on seman-
tic web technologies and OWL axiomatization, lack-
ing rule-based reasoning capabilities. Similarly, (Val-
adares Vieira et al., 2025) models events using upper-
level types related to geological processes but also
lacks a reasoning approach. Currently, no proposals
effectively operationalize ontological event descrip-
tions without additional tools or specific extensions.

This work will focus on the issue of event reason-
ing inside the semantic web toolkit, specifically for
reasoning on event consequences. We will borrow
some concepts regarding event patterns from (Anicic
et al., 2011) to define types of events with shared be-
havior between all their individuals. Additionally, in-
spired by the use of SQWRL to supplement SWRL’s
shortcomings (Mepham and Gardner, 2009), we will
utilize SHACL, as a rule-based language, together
with SPARQL, through SHACL-SPARQL advanced

Event Modeling for Reasoning of Consequences

73



Table 1: Related Works Comparison.

Title Technology
Compati-
bility

Event
Coverage

Ontological
Commit-
ment

Domain

A Core Ontology for Business Process Analysis Partial Broad Half/Full BPM
A Method of Emergent Event Evolution Reasoning Based on
Ontology Cluster and Bayesian Network

None Specific Loose Emergency
Scenarios

An Ontology of Environments, Events, and Happenings Full Strict Full DEDP
ETALIS: Rule-Based Reasoning in Event Processing None Broad Loose Agnostic
Event ontology reasoning based on event class influence factors None Broad Half Emergency

Scenarios
Implementing discrete event calculus with semantic web tech-
nologies

Partial Broad Half Web Ser-
vices

Ontology-Based Context Event Representation, Reasoning, and
Enhancing in Academic Environments

Full Specific Half/Full Academic

Time event ontology (TEO): to support semantic representation
and reasoning of complex temporal relations of clinical events

Partial Strict Half Medical

Portions of Matter and Their Existential Events: An Ontology-
Based Conceptual Model

None Specific Full Geology

features (Knublauch et al., 2017), making it unneces-
sary to implement a software solution to tie both of
them.

4 DEVELOPING A REASONING
APPROACH

This work aims to propose a domain-agnostic method
to infer the consequences of events while not requir-
ing the modeler to utilize a description language ex-
ternal to the usual development stack for the semantic
web. The approach is not intended for the final user
of applications but for the modeler, or developer that
connects data to the model. To be able to do so, we
propose a modeling approach for events compatible
with the triple-based description of ontologies.

To allow for reasoning on events as transitions to
a broader selection of worldviews, the proposed mod-
eling approach tries to make the minimum amount
of compromises with how to model the surround-
ing context. An important distinction to keep in
mind is between entities that have temporal parts,
called Occurents or Perdurants, and entities that are
wholly present in every instant, called Continuants
or Endurants. Events are occurrents, and their par-
ticipants are continuants. Furthermore, the basis of
our modeling approach is the Aristotelian Ontologi-
cal Square, which categorizes continuants into Sub-
stantials, which are existentially independent entities
(e.g., a ball, a cat) and Accidentals, which are entities
that depend on substantials and characterize the ways
they are (e.g., color, size). Based on that, we char-
acterize events and their types according to how the
accidents of the participants vary during the event.

Considering that our interest in events in this
work refers to the consequences of these events in
the world, we will characterize events regarding their
upper-level types. These types are the following:
States, where the only change in situations is their
temporal position; Simple Changes, where the qual-
ities of participants change, but their identity is pre-
served; Transformations, where the qualities and
identity of participants change; and Existential Oc-
currents, where the existence of participants change
(Rodrigues et al., 2020).

To work with these upper-level types, we decided
to break them down into simpler events that con-
tainerize their behavior on a “building blocks” ap-
proach. The identified event types are Creation Event,
Destruction Event, Relation Modification Event, and
Quality Modification Event. With these, we can
represent Existential Occurrents with creation and
destruction events, Simple Changes with relation
and quality modification events, and Transformations
with a combination of them all. This approach tries
to minimize the intersection between the events while
allowing for more granular control of expressivity.

Additionally, the behavior represented by such
classes creates some dependencies with their partic-
ipants, their types, and some relations. This depen-
dence is slightly different, due to being more gen-
eral, than the usual existential dependence between
events and their objects, but represents existential de-
pendence. As such, the following predicates emerge:

• Creating an individual by a Creation Event de-
pends on the class of the created individual.

• The destruction of an individual by a Destruction
Event depends on the destroyed individual.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

74



• The gain and loss of a relation depends on the re-
lation, the subject of the predicate, and the object
of the predicate.

• The gain and loss of quality depend on the class
of the quality, the individual that is (or will be) the
bearer, and the relation of inherence.

Although it is possible to represent the Quality Modi-
fication Event as a combination of the Relation Modi-
fication Event and the creation and destruction events,
due to the importance of the semantics regarding qual-
ities in ontologies, we have decided to separate them
into a special class of events as is described in the next
section.

4.1 The Model

To address the event classes aforementioned, while
containing their usage to OWL constructs, we face
two interesting problems: Creation Event depends on
a class (i), since the individual it would be able to ref-
erence does not exist yet; and modification events de-
pend on relations (ii) since we need to make explicit
how the participating individuals should be (or not be)
related after the occurrence of the event. These lead to
problems because OWL ObjectProperties are only al-
lowed between individuals, creating a clear separation
between the intensional and extensional models. This
metamodeling problem is further discussed in (Motik,
2005), but (OWL Working Group, 2012) solves this
problem with the introduction of “punning” in OWL
2, with the caveat that “To allow a more readable syn-
tax, and for other technical reasons, OWL 2 DL re-
quires that a name is not used for more than one prop-
erty type (object, datatype or annotation property) nor
can an IRI denote both a class and a datatype.” (OWL
Working Group, 2012).

With this addition, and while following the re-
quired restrictions for punning, it is possible to
represent the necessary predicates in OWL 2 DL.
To force some restrictions on how we utilize pun-
ning, it was necessary to define a set of metatypes
that govern how our reasoning will interact with
the defined classes. To do so, we take inspira-
tion from how UFO deals with punning in their
OWL implementation gUFO (Almeida et al., 2020).
While gUFO’s definitions are useful, our proposed
model tries to be less compromising in regards
to ontological commitment, resulting in a simpli-
fied subset of metatypes parting from the defi-
nitions of gufo:EventType, gufo:EndurantType and
gufo:RelationshipType. The initial separation is be-
tween TypeOfTypes (eg. metatypes) and TypeOfPar-
ticulars, serving the same purpose of gufo:Type and
gufo:Individual, which resulted in the following tax-

onomy, where enumeration represents its hierarchical
level:

1. TypeOfTypes: Class of second-level types, whose
individuals are other types. Equivalent to
gufo:Type.

1.1. EventType: The type of events.
1.2. ObjectType: The type of independent continu-

ants.
1.3. RelationType: The type of binary predicates.

Individuals of this type are object properties.
1.4. QualityType: The type of existentially depen-

dent continuants.

2. TypeOfParticulars: Class of particulars, whose in-
dividuals cannot be instantiated. Equivalent to
gufo:Individual.

2.1. Event: An Occurrent, something that happens
in time.

2.1.1. CreationEvent: An Event that concerns the
creation of an object.

2.1.2. DestructionEvent: An Event that concerns the
destruction of an object. The occurrence of
this event requires the participation of the ob-
ject target of destruction.

2.1.3. ModificationEvent: An Event that entails the
gain or loss of some property.

2.1.3.1. RelationModificationEvent: A Modification
Event that concerns the gain or loss of a re-
lation. The occurrence of this event requires
the participation of a subject and an object in
the relation.

2.1.3.2. QualityModificationEvent: A Modification
Event that concerns the gain or loss of qual-
ity. The occurrence of this event requires the
participation of the object bearer of the qual-
ity.

To represent the class dependencies presented previ-
ously, we propose the following relations to comple-
ment the taxonomy above:

1. ConcernsType: A relation between an EventType
and another TypeOfTypes. Indicates that there is
some correlation between the two types that man-
ifests in every occurrence of the individuals of the
event class.

1.1. ConcernsObject: A relation between an Event-
Type and an ObjectType.

1.1.1. ConcernsCreationOf: A relation between an
EventType, subclass of CreationEvent, and an
ObjectType. Indicates that the occurrence of
an individual of the event class results in the
creation of an individual of the object class.

Event Modeling for Reasoning of Consequences

75



1.1.2. ConcernsDestructionOf: A relation between
an EventType, subclass of DestructionEvent,
and an ObjectType. Indicates that the occur-
rence of an individual of the event class results
in the destruction of an individual of the object
class.

1.1.3. ConcernsModificationOf: A relation between
an EventType, subclass of ModificationEvent,
and an ObjectType. Indicates that the occur-
rence of an individual of the event class results
in a modification of an individual of the object
class.

1.1.3.1. ConcernsModificationAsSubject: A modifi-
cation relation that makes explicit the role
of the object as the predicate’s subject in
a relation. This relation is useful when an
event concerns the modification of two ob-
jects, like in RelationModificationEvent.

1.1.3.2. ConcernsModificationAsObject: A modifi-
cation relation that makes explicit the role
of the object as the predicate’s object in a
relation. This relation is useful when an
event concerns the modification of two ob-
jects, like in RelationModificationEvent.

1.2. ConcernsRelation: A relation between an
EventType, subclass of ModificationEvent, and
a RelationType. Indicates the concerned rela-
tion influences the state between occurrences of
the event.

1.2.1. GivesRelation: A relation between an Event-
Type, subclass of ModificationEvent, and a
RelationType. Indicates that the occurrence of
an individual of the event class results in an in-
stantiation of the individual of RelationType.

1.2.2. RemovesRelation: A relation between an
EventType, subclass of ModificationEvent,
and a RelationType. Indicates that the occur-
rence of an individual of the event class results
in removing an instance of the individual of
RelationType.

1.3. ConcernsQuality: A relation between an Event-
Type, subclass of QualityModificationEvent,
and a QualityType. Indicates that the occur-
rence of an individual of the event class results
in the creation or destruction of an individual of
the quality class.

2. ParticipatesIn: A relation between an owl:Thing,
of metatype ObjectType, and an Event. Indicates
the participation of an object in an event.

2.1. DestroyedBy: A relation between an
owl:Thing, of metatype ObjectType or
QualityType, and an Event. Indicates that the
event destroys the participant.

2.2. ModifiedBy: A relation between an owl:Thing,
of metatype ObjectType, and a Modification-
Event. Indicates that the event will modify the
participant in some way.

2.2.1. SubjectModifiedBy: A relation between an
owl:Thing, of metatype ObjectType, and a Re-
lationModificationEvent. It indicates that the
participant is or will become subject to the re-
lation concerned by the event.

2.2.2. ObjectModifiedBy: A relation between an
owl:Thing, of metatype ObjectType, and a Re-
lationModificationEvent. It indicates that the
participant is or will become an object to the
relation concerned by the event.

2.2.3. BearerModifiedBy: A relation between an
owl:Thing, of metatype ObjectType, and a
QualityModificationEvent. It indicates that
the participant is or will be the bearer of some
quality concerned by the event.

Note that this proposed model has four Metatypes, un-
der the class TypeOfTypes, to represent the four main
entities that we predicate about, as well as six types
of metatype EventType, under the class TypeOfInd-
ividuals. We also have delimited relations between
types, with relation ConcernsType, and between indi-
viduals, with relation ParticipatesIn. This is the mini-
mum amount of metatypes needed to represent all the
different types of events we proposed to cover, but it
is not the only approach we analyzed. These general
metatypes introduce reasoning possibilities during the
modeling phase of the ontology by the OWL reason-
ers included in ontology engineering tools. The solu-
tion to complement consistency checking, as well as
the inference on event occurrence, is further detailed
in section 4.21.

4.2 The Reasoning

To realize the behavior from modeled events, we need
to be able to define some inference rules to interpret
the semantics expressed by the defined relations. Ad-
ditionally, we define some validation reasoning rules
to ensure that all aspects of the model are correctly
applied and the inference will not produce undesired
results.

As already contemplated in section 3, OWL ax-
ioms are not expressive enough to represent dynamic
behavior, so we opt for utilizing rule-based reasoning
to validate and infer over events. We define the fol-
lowing reasoning rules with SHACL Shapes for vali-
dation and SHACL Rules for inferring, but it is impor-

1The developed model, including the reasoning rules, is
available at https://github.com/hrssilva/omice.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

76



tant to note that these definitions depend on SHACL
advanced features (specifically for SHACL Rules and
SHACL-SPARQL), depending on the support to such
features to work.

4.2.1 Rule-Based Validation

Since the restrictions that can be represented with
OWL are not specific enough for the relations be-
tween types, we define some rules to validate the cor-
rectness of the relation usage with classes in the tax-
onomy of events.

∀e,EventType(e)∧ subClassO f (e,CreationEvent)
→∃o(ConcernsCreationO f (e,o)

∧Ob jectType(o)) (1)

∀e,EventType(e)
∧ subClassO f (e,DestructionEvent)

→∃o(ConcernsDestructionO f (e,o)
∧Ob jectType(e,o))

(2)

∀e,EventType(e)
∧ subClassO f (e,Modi f icationEvent)

→∃r(RelationType(r)
∧ (GivesRelation(e,r)

∨RemovesRelation(e,r)))

(3)

∀e,EventType(e)
∧ subClassO f (e,QualityModi f icationEvent)

→∃o∃q(Ob jectType(o)∧QualityType(q)
∧ConcernsModi f icationO f (e,o)
∧ConcernsQuality(e,q))

(4)

∀e,EventType(e)
∧ subClassO f (e,RelationModi f icationEvent)

→∃o1∃o2(Ob jectType(o1)∧Ob jectType(o2)

∧ConcernsModi f icationAsSub ject(e,o1)

∧ConcernsModi f icationAsOb ject(e,o2))

(5)

Axiom 1 can be expressed with SHACL-SPARQL
through the use of a SHACL Shape with constraint
represented by listing 1 and target represented by list-
ing 2. SHACL ties both of the listing definitions
through a Shape, which it will use to validate the
graph: if, by applying each constraint to each entity
selected by target, constraint returns a triple, then the
entity does not conform to shape (resulting in a viola-
tion). Listing 3 exemplifies how a Shape is described.
Axioms 2, 3, 4 and 5 follow the same pattern of axiom
1.

Listing 1: Creation Constraint.
:CreationEventTypeConstraint rdf:type

owl:NamedIndividual ,
sh:SPARQLConstraint ;

sh:message "A CreationEvent class
should concern the creation of
an individual of ObjectType." ;

sh:select """
prefix : <https://hrssilva.github.

io/ontology/omice.ttl\#>
prefix rdfs: <http://www.w3.org

/2000/01/rdf-schema\#>
prefix owl: <http://www.w3.org

/2002/07/owl\#>
prefix rdf: <http://www.w3.org

/1999/02/22 -rdf-syntax -ns\#>
SELECT \$this ?path ?objectclass
WHERE {
BIND(:ConcernsCreationOf as ?path)
NOT EXISTS {
$this ?path ?objectclass .
?objectclass a :ObjectType .
}}""" .

Listing 2: Creation Target.
omice:CreationEventTypeTarget rdf:type

owl:NamedIndividual ,
sh:SPARQLTarget ;

rdfs:comment "Targets all
subclasses of CreationEvent
that are of type EventType" ;

sh:select """
prefix : <https://hrssilva.github.

io/ontology/omice.ttl#>
prefix rdfs: <http://www.w3.org

/2000/01/rdf-schema#>
prefix owl: <http://www.w3.org

/2002/07/owl#>
prefix rdf: <http://www.w3.org

/1999/02/22 -rdf-syntax -ns#>
SELECT ?entity
WHERE {
?entity a :EventType ;
rdfs:subClassOf+ :CreationEvent .
}""" .

Listing 3: Creation Shape.
omice:CreationEventTypeShape rdf:type

owl:NamedIndividual ,
sh:NodeShape ;

rdfs:comment "Validates that all
type restrictions on subclasses
of CreationEvent are being

correctly modeled" ;
sh:sparql omice:

CreationEventTypeConstraint ;
sh:target omice:

CreationEventTypeTarget .

This SHACL definitions relate to second-level logic
axioms in the following way: an axiom of the shape

Event Modeling for Reasoning of Consequences

77



A → B, representing a restriction over A, can be ex-
pressed by Shape(T, C), where T is a SHACL Target,
T ≡ A, C is a constraint and C ≡ ¬ B.

Some implicit restrictions permeate across type
relations and individual relations:

• (i) If an event concerns the destruction of an object
class, then the individual destroyed by this event
should be of the concerned object class: axiom 6.

∀ei,E(ei)∧ subClassO f (E,DestructionEvent)
∧ConcernsDestructionO f (E,O)

→∃oi(O(oi)∧DestroyedBy(oi,ei))

(6)

• (ii) If an event concerns the modification of an
object class, then the individual modified by this
event should be of the concerned object class: ax-
iom 7.
This topic unfolds into several cases in the pro-
posed model, where the modification relation
branches into bearer modification, subject modi-
fication, and object modification, but for simplic-
ity’s sake, we will consider that all those cases are
included in the ConcernsModification relation and
the ModifiedBy participation, generalizing this ax-
iom for the ModificationEvent class.

∀ei,E(ei)∧ subClassO f (E,Modi f icationEvent)
∧ConcernsModi f icationO f (E,O)

→∃oi(O(oi)∧Modi f iedBy(oi,ei)) (7)

• (iii) If an event removes a relation of inherence,
the quality destroyed by the event should be of
the concerned quality class: axiom 8.

∀ei,E(ei)

∧ subClassO f (E,QualityModi f icationEvent)
∧ConcernsQuality(E,Q)→∃qi(Q(qi)

∧DestroyedBy(qi,ei))

(8)

4.2.2 Rule-Based Inference

To generate the desired inferences, we must be able
to include and to remove triples from the model. The
first is not a problem since SHACL processors cre-
ate a new graph with the result of any inference, but
for the same reason, removing triples directly from
the model is unavailable. To allow for a decrement
in the model, we apply the inference engine to repli-
cate every triple we do not want to remove, resulting
in a new inference-produced graph, the original graph
where the undesired elements were not included.

For this purpose we created three shapes, each
with a single responsibility in constructing the new

graph. The ReplicateUniversalsShape targets unin-
teresting entities (entities that are not directly related
to possible reasoning) and simply replicates those
triples through its rule; the StepIncrementStateShape
that only deals with events that cannot cause destruc-
tion of entities, by including new triples to the model;
the StepDecrementStateShape that deals with events
that may cause the destruction of entities, by select-
ing which triples will be replicated in the model and
which will be ignored.

The assumption that a model going through infer-
ence rules is correctly modeled, because it is verified
by the validation rules, allows us to be pragmatic in
definitions of targets and rules. The targets for indi-
viduals ignore entities that are subjects of the relation
DestroyedBy, effectively removing the destroyed en-
tities from the resulting model.

The inference approach we propose builds a new
model, based on the input model, with the inferred
consequences of events ”baked in”, so, to deal with
the removed relations and references to destroyed ob-
jects while replicating the maintained triples to the
new model, the rule DiscardLossObjectsRule repli-
cates all triples where the given entity is subject, while
ignoring those whose object is being destroyed. Sim-
ilarly, the DiscardLossRelationsRule has to ignore
triples when the subject and object are being modi-
fied by a modification event, and this event class has
a relation of RemovesRelation with the relation of the
analyzed triple. In this sense, while applying the Dis-
cardLossObjectsRule, the reasoning engine will look
at all selected triples and try to match a negative pat-
tern: for a triple “T” with shape “a r b”, if there is no
triple with shape “b DestroyedBy c”, then “T” is in-
cluded in the new model. By using these rules, we can
completely remove destroyed entities, as well as any
reference to them, from the newly generated model
while including all other previous triples.

The inference rules are as follows:

• CreationRule: Creates a new individual of the
concerned class.

• GainsQualityRule: Crates an individual of the
concerned quality class and instantiates the con-
cerned inherence relation between the new indi-
vidual and the bearer.

• GainsRelationRule: Instantiates a relation be-
tween the subject and object-modified individuals.

• DiscardLossObjectsRule: Replicates every triple
for the target, except when an event destroyed the
object of the triple.

• DiscardLossRelationsRule: Replicates every
triple for the target, except when an event
removes the triple relation.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

78



Figure 1: The Before and After of the marriage event.

Figure 1 exemplifies the behavior of the reasoner
in the case of a marriage event, where, given the oc-
currence of the event, a pair of individuals of type Per-
son will now be related through the MarriedTo rela-
tion. t0 represents the original model, while t1 is the
resulting model after inference.

5 MODELING VALVE EVENTS
FOR THE OIL & GAS
INDUSTRY

We modeled a use case of the Oil & Gas (O&G) in-
dustry consisting of a Production Well to exemplify
Rule-Based reasoning’s real-world applicability. The
complexity of the industry makes data analysis one
of the biggest hurdles for O&G professionals, to the
point where they can spend 80% of their time in data
acquisition and conversion tasks (Brewer et al., 2019).

In this example, we utilize O3PO (Santos et al.,
2024) as a domain ontology and, consequently, its top
ontology (BFO), so we must integrate OMICE (the
proposed solution, named Ontology Model for Infer-
ence on Consequences of Events) with it. This is
not a problem since there are no incompatible def-
initions, and the only overlapping definitions are of
Event and participation. Given that BFO does not
define any subclasses for Event and OMICE has no
conflicting axioms for events, it is enough to utilize
OWL’s SameAs between BFO and OMICE definitions
of Event class and between both participation rela-
tions.

O3PO defines a Production Well as “an object ag-
gregate that is used to produce hydrocarbons or in-
ject fluids, and it is located in a wellbore” and allows
the model to track the path of the Oil through the
feeds fluid to relation. In this example, we demon-
strate how to model the event of valve closing can be
used to verify if closing a valve will stop the flow of
Oil from a well to a platform.

We start by instantiating the Floating Production
Storage and Offloading (FPSO) that we want the oil to
reach as a component of a plant in a certain field. To
determine that oil has reached this FPSO, we create a
choke valve as a sort of entry point component. The
path that needs to be followed to reach this entry point
is modeled as a flowline, defined as “a pipeline that
carries oil, gas or water that connects the wellhead to
a manifold or a platform”.

Looking at the other side of the oil flow, the
source, we instantiate the production well and its
parts: its annular space (the oil-filled space between
the reservoir and the well tubing), its borehole, and
its wellhead. The production column of the well re-
ceives the oil from the annular space. The valves and
tubing build the column for transporting the oil to the
wellhead. In this case, the annular space and the pro-
duction column are separated into three parts by three
Inflow Control Valves (ICV), which manage if the oil
can pass from the respective part of the annular space
to the production column. This means that if any ICV
is open, oil flows through the production column and
feeds to a Downhole Safety Valve (DHSV). From the
DHSV, the oil goes to the wellhead, then leaves the
well and goes to a subsea tree (specifically to a master
valve, a component of the subsea tree), finally reach-
ing the flowline.

From now on, in this section, we will use the syn-
tax A(a) to say that a is an instance of class A and
R(a, b) to say that a has relation R with b, so we can
easily keep track of the different instances involved.
In this example the valves created are: icv(ICV001),
icv(ICV002), icv(ICV003), dhsv(DHSV001), mas-
ter valve(MASTER001) and, the destination of the oil,
choke(PLATFORMCHOKE001), each with their in-
stance of operational state quality (either operational
or not operational). The other relevant instances are:
Production Well(PWELL001) and FPSO(FPSO001).
Figure 2 shows the configuration of valves and equip-
ment of this example.

Event Modeling for Reasoning of Consequences

79



Figure 2: Configuration of equipment for offshore oil ex-
traction.

To model the events, we create the ClosingOf-
Valve and OpeningOfValve events (our main events)
and the quality modification events RemoveValve-
OperationalState, GiveValveClosedState and Give-
ValveOpenState. Through OWL axioms, we force
the ClosingOfValve instances to have exactly one in-
stance of RemoveValveOperationalState and exactly
one instance of GiveValveClosedState as parts, simi-
larly, OpeningOfValve has parts RemoveValveOpera-
tionalState and GiveValveOpenState. Figure 3 show
an excerpt of how we have modeled the ClosingOf-
Valve events, including individuals.

Figure 3: ClosingOfValve example model.

To know if a well is feeding oil to a platform,
we will utilize a SPARQL ASK query to test if there
is a path between any of the well’s ICV and a plat-
form component. Additionally, there must not ex-
ist any valve in the way that has an instance of
not operational inhering in it, resulting in the query
in listing 4.

Listing 4: Query to know if well is feeding oil to platform.
PREFIX o3po: <https://www.petwin.org/

o3po -resources/o3po#>
PREFIX rdfs: <http://www.w3.org

/2000/01/rdf-schema#>
PREFIX core: <https://purl.

industrialontologies.org/ontology
/core/Core/>

PREFIX ex: <http://www.example.org/
well.ttl#>

ASK
WHERE {

?bot a o3po:ICV ;
o3po:feeds_fluid_to+ ?v1;
o3po:connected_to*/o3po:

component_of* ex:PWELL001
.

FILTER NOT EXISTS {?bot ˆcore:
qualityOf [ a ex:
not_operational ] } .

?v1 a/rdfs:subClassOf* o3po:valve ;
o3po:feeds_fluid_to+ ?v2 .

?q1 core:qualityOf ?v1 ;
a ex:operational .

?v2 a/rdfs:subClassOf* o3po:valve ;
o3po:feeds_fluid_to* ?top .

?q2 core:qualityOf ?v2 ;
a ex:operational .

?top o3po:component_of ex:FPSO001 .
}

In the initial state of the model, where no event
has occurred, all valves are operational except for
ICV002. In this scenario, the query returns True,
shown in listing 5. By instantiating a ClosingOfValve
event, targeting DHSV001, and running the infer-
ence, we can see that the resulting model excludes the
triples shown in Equation 9 and introduces the triples
in Equation 10, resulting in no available path, since
DHSV001 closes the only path between the produc-
tion column and the wellhead. When rerunning the
query of Listing 4, we then receive False, as shown in
Listing 6.

OPEN DHSV 001 −−→type NamedIndividual

OPEN DHSV 001
−−−−−−→
qualityO f DHSV 001

OPEN DHSV 001 −−→type operational

OPEN DHSV 001
−−−−−−−−→
destroyedBy

REMOV E STAT E DHSV 001

(9)

not operational202407... −−→type NamedIndividual

not operational202407...
−−−−−−→
qualityO f DHSV 001

not operational202407... −−→type not operational
(10)

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

80



Listing 5: Query result for the initial model state.
{’head ’: {}, ’boolean ’: True}

Listing 6: Query result with a closed DHSV.
{’head ’: {}, ’boolean ’: False}

This example demonstrates how we can utilize the
reasoning approach proposed to dynamically query
over the state of the model, given the occurrence of
some event. Through the SPARQL queries, we can
attest to the consequence of a possible closing of a
valve, demonstrating the effect of the reasoning. Nev-
ertheless, there are some problems with the developed
event model: the need for the classes Operational and
NotOperational highlights the limitation imposed by
not dealing with quality values. By ontological stan-
dards, a quality is inherent to its bearer and should not
be destroyed when there is a change in quality value,
but for implementation issues, dealing only with gain
and loss of quality requires that we take such an ap-
proach in this model. To correctly represent this ex-
ample, only the class OperationalState, whose indi-
viduals have the values ”0” or ”1”, should exist, and
the ClosingOfValve event should set this value to ”0”.

6 CONCLUSION

Through this work, we explored rule-based reason-
ing to infer the consequences of events, successfully
keeping our solution inside the boundaries of the Se-
mantic Web by utilizing SHACL-SPARQL as a rule
description language. We also presented a model on
types of events that implement relations capable of re-
vealing the implicit qualities of event occurrence, how
an event happens, and describing processable behav-
ior of creation, destruction, and modification of ob-
jects. We also exemplified how this model can be uti-
lized and successfully modeled a use case of the O&G
industry by importing our proposed model in the do-
main ontology O3PO. Considering the gathered (in
chapter 3) current solutions to deal with event reason-
ing in ontologies, our proposed solution takes a differ-
ent direction by focusing on event consequences and
taking technological compatibility in high regard.

6.1 Current Limitations

Although we successfully operationalized events, we
only approached a marginal part of all that events rep-
resent. A big missing part for real-world applicability
is the treatment of OWL DataProperties. This caused
a discomforting peculiarity in our model when deal-
ing with qualities, which was clear in our example

when choosing how to model the operational state of
valves.

Another deficit of our work is regarding how
events relate to one another. When dealing with com-
plex scenarios, it is common to have events that hap-
pen in a certain order or that affect the outcome of
one another. By not representing this relationship, it
becomes very difficult to model complex events when
the intermediary steps of the event are of interest.

6.2 Future Works

As section 6.1 made clear, there is still much room for
growth in our current proposition, which we intend to
do. Another interesting path is to utilize the same rea-
soning approach to other aspects of events, like deal-
ing with participant recognition and event triggers, or
to implement temporal relations between events, such
as those defined by (Allen, 1983).

ACKNOWLEDGEMENTS

The PeTwin project was financed by FINEP and the
Libra Consortium (Petrobras, Shell Brasil, Total En-
ergies, CNOOC, CNPC). The research group is sup-
ported also by CAPES Finance Code 001 and CNPq,
the Brazilian Finance Council.

REFERENCES

Allen, J. F. (1983). Maintaining knowledge about temporal
intervals. Communications of the ACM, 26(11):832–
843.

Almeida, J., Falbo, R., Guizzardi, G., and Prince Sales, T.
(2020). gufo: A lightweight implementation of the
unified foundational ontology (ufo).

Anicic, D., Fodor, P., Rudolph, S., Stühmer, R., Stojanovic,
N., and Studer, R. (2011). ETALIS: Rule-Based Rea-
soning in Event Processing, pages 99–124. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Benevides, A., Bourguet, J.-R., Guizzardi, G., Peñaloza,
R., and Almeida, J. (2019). Representing a reference
foundational ontology of events in sroiq. Applied On-
tology, 14:1–42.

Bennett, J. (2002). What events are. In Gale, R. M., editor,
The Blackwell Guide to Metaphysics, page 43. Wiley-
Blackwell.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The
semantic web. Scientific American, 284(5):34–43.

Brewer, T., Knight, D., Noiray, G., and Naik, H. (2019).
Digital Twin Technology in the Field Reclaims Off-
shore Resources. volume Day 1 Mon, May 06, 2019
of OTC Offshore Technology Conference.

Event Modeling for Reasoning of Consequences

81



Davidson, D. (1969). The Individuation of Events, pages
216–234. Springer Netherlands, Dordrecht.

Ding, L., Kolari, P., Ding, Z., and Avancha, S. (2007). Us-
ing Ontologies in the Semantic Web: A Survey, pages
79–113. Springer US, Boston, MA.

Ermolayev, V., Keberle, N., and Matzke, W.-E. (2008). An
ontology of environments, events, and happenings. In
2008 32nd Annual IEEE International Computer Soft-
ware and Applications Conference, pages 539–546.

Guizzardi, G., Guarino, N., and Almeida, J. P. A. (2016).
Ontological considerations about the representation of
events and endurants in business models. In La Rosa,
M., Loos, P., and Pastor, O., editors, Business Process
Management, pages 20–36, Cham. Springer Interna-
tional Publishing.

Guizzardi, G., Wagner, G., Falbo, R., Guizzardi, R., and
Almeida, J. (2013). Towards ontological foundations
for the conceptual modeling of events. volume 8217,
pages 327–341.

Horrocks, I., Patel-Schneider, P. F., and van Harmelen, F.
(2003). From shiq and rdf to owl: the making of a
web ontology language. Journal of Web Semantics,
1(1):7–26.

Keet, C. M. (2020). An Introduction to Ontology Engineer-
ing, chapter 10, pages 193 – 209. C. Maria Keet.

Knublauch, H., Allemang, D., and Steyskal, S. (2017).
Shacl advanced features. https://www.w3.org/TR/
2017/NOTE-shacl-af-20170608/. Accessed at: febru-
ary 4th, 2024.

Lei, L., Ren, X., Franciscus, N., Wang, J., and Stantic,
B. (2019). Event prediction based on causality rea-
soning. In Nguyen, N. T., Gaol, F. L., Hong, T.-P.,
and Trawiński, B., editors, Intelligent Information and
Database Systems, pages 165–176, Cham. Springer
International Publishing.

Li, F., Du, J., He, Y., Song, H.-Y., Madkour, M., Rao, G.,
Xiang, Y., Luo, Y., Chen, H. W., Liu, S., Wang, L.,
Liu, H., Xu, H., and Tao, C. (2020). Time event on-
tology (teo): to support semantic representation and
reasoning of complex temporal relations of clinical
events. Journal of the American Medical Informatics
Association, 27(7):1046–1056.

Li, S., Chen, S., and Liu, Y. (2019). A method of emergent
event evolution reasoning based on ontology cluster
and bayesian network. IEEE Access, 7:15230–15238.

Masolo, C., Borgo, S., Gangemi, A., Guarino, N.,
and Oltramari, A. (2003). Wonderweb deliver-
able d18. http://wonderweb.man.ac.uk/deliverables/
documents/D18.pdf.

Mepham, W. and Gardner, S. (2009). Implementing dis-
crete event calculus with semantic web technologies.
In 2009 Fifth International Conference on Next Gen-
eration Web Services Practices, pages 90–93.

Motik, B. (2005). On the properties of metamodeling in
owl. In Gil, Y., Motta, E., Benjamins, V. R., and
Musen, M. A., editors, The Semantic Web – ISWC
2005, pages 548–562, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Otte, J. N., Beverley, J., and Ruttenberg, A. (2022). Bfo:
Basic formal ontology. Applied ontology, 17(1):17–
43.

OWL Working Group (2012). Owl 2 web ontology lan-
guage primer (second edition). https://www.w3.org/
TR/owl2-primer/. Accessed at: july 4th, 2024.

Padilla-Cuevas, J., Reyes-Ortiz, J. A., and Bravo, M.
(2021). Ontology-based context event representation,
reasoning, and enhancing in academic environments.
Future Internet, 13(6).

Pedrinaci, C., Domingue, J., and Alves de Medeiros, A. K.
(2008). A core ontology for business process analy-
sis. In Bechhofer, S., Hauswirth, M., Hoffmann, J.,
and Koubarakis, M., editors, The Semantic Web: Re-
search and Applications, pages 49–64, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

Quinton, A. (1979). Objects and events. Mind,
88(350):197–214.

Rodrigues, F., Carbonera, J., and Abel, M. (2020). Upper-
Level Types of Occurrent Based on the Principle of
Ontological Conservation, pages 353–363. Springer
International Publishing.

Rodrigues, F. H. and Abel, M. (2019). What to consider
about events: A survey on the ontology of occurrents.
Applied Ontology, 14(4):343–378.

Santos, N. O., Rodrigues, F. H., Schmidt, D., Romeu,
R. K., Nascimento, G., and Abel, M. (2024). O3PO:
A domain ontology for offshore petroleum pro-
duction plants. Expert Systems with Applications,
238:122104.

Smith, B. and Grenon, P. (2005). The cornucopia of formal-
ontological relations. Dialectica, 58:279–296.

Studer, R., Benjamins, V., and Fensel, D. (1998). Knowl-
edge engineering: Principles and methods. Data &
Knowledge Engineering, 25(1):161–197.

Valadares Vieira, L., Henrique Rodrigues, F., and Abel, M.
(2025). Portions of matter and their existential events:
An ontology-based conceptual model. In Maass, W.,
Han, H., Yasar, H., and Multari, N., editors, Concep-
tual Modeling, pages 152–169, Cham. Springer Na-
ture Switzerland.

Xue, J.-R., Fang, J.-W., and Zhang, P. (2018). A sur-
vey of scene understanding by event reasoning in au-
tonomous driving. International Journal of Automa-
tion and Computing, 15(3):249–266.

Zhong, Z., Liu, Z., Li, C., and Guan, Y. (2012). Event on-
tology reasoning based on event class influence fac-
tors. International Journal of Machine Learning and
Cybernetics, 3(2):133–139.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

82


