Agile Retrospectives: What Went Well? What Didn’t Go Well? What
Should We Do?

Maria Spichkoval 2 Hina Lee!, Kevin Iwan!-2, Madeleine Zwar

t1-2, Yuwon Yoon' and Xiaohan Qin!

LSchool of Computing Technologies, RMIT University, Melbourne, Australia

2

maria.spichko

solutions.com,

{53910654,54000117,53959666 } @ student.rmit.edu.au

Keywords:

Abstract:

Software Engineering, Agile, Scrum, Retrospectives, HCI, Information Visualization, LLMs.

In Agile/Scrum software development, the idea of retrospective meetings (retros) is one of the core elements

of the project process. In this paper, we present our work in progress focusing on two aspects: analysis of
potential usage of generative Al for information interaction within retrospective meetings, and visualisation of
retros’ information to software development teams. We also present our prototype tool RetroAl++, focusing

on retros-related functionalities.

1 INTRODUCTION

Over the last years, Agile became the most popu-
lar approach for software development. This ap-
proach gains popularity with each year (Al-Saqqa
et al., 2020). According to the 17th State of Agile re-
port based on the survey conducted in 2023 (digital/ai,
2023), 71% of respondents use Agile in their software
development lifecycle, while the most popular Agile
methodology continues to be Scrum (Schwaber and
Sutherland, 2011). Moreover, the ideas of Agile are
now adopted in various forms in many areas beyond
software development. One of the key-elements of
the Scrum methodology are Retrospectives (Retros) -
a special type of meetings to be conducted at the very
end of each development iteration (sprint). The goal
of these meetings is to discuss how the sprint went and
to identify what could be done to support continuous
improvement within the development team. Indeed,
at the end of any kind of iteration (whether it is a soft-
ware development sprint, teaching semester, research
project phase or anything else that has any properties
of an iteration), it makes sense to look back and re-
flect on it to learn out of the experience. But how
exactly do we need to organise this activity?

The idea of retros can really benefit the project
only if the participants can have a trusted environ-
ment to speak out. In the ideal world, all team mem-
bers equally respect each other (irrespectively of gen-

(2 https://orcid.org/0000-0001-6882-1444

746

Spichkova, M., Lee, H., Iwan, K., Zwart, M., Yoon, Y. and Qin, X.

Agile Retrospectives: What Went Well? What Didn’'t Go Well? What Should We Do?.
DOI: 10.5220/0013441200003928

Paper published under CC license (CC BY-NC-ND 4.0)

der, age, race, etc.), can openly speak about the is-
sues without having a fear to be silenced and lose
their face, are happy to suggest ways to improve while
knowing that their suggestions will be taken into ac-
count. But our real world is not so ideal, and the
process of work climate improvement will take years.
Discussions related to issues, performance and im-
provements might be very stressful for participants,
especially if there is some power imbalance within the
team members (e.g., junior vs. senior developers) or
some biases might be potentially involved (e.g., re-
lated to gender (Marsden et al., 2021)).

One of the solutions would be to use tools to allow
for more anonymity in the discussion and to create a
psychologically safe environment, see e.g. (Khanna
and Wang, 2022). Originally, Scrum retros were con-
ducted as oral discussions with corresponding notes
created during the meeting. Then (physical) retro
boards have been introduced, where the space of a
white board or a wall was divided in a number of
columns or sections, each team member put sticky
notes with their comments in the corresponding cate-
gories (typically presented by board columns or quad-
rant), which provided a basis of retro summary and
decisions. The first two sections are typically repre-
senting good and bad points about the sprint, so they
are named as “What went well?” and “What didn’t
go well?”, with some wording variations. The rest
of the board might be presented different in differ-
ent approaches. Using an online board provides many
advantages, especially in the current software devel-

In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 746-753

ISBN: 978-989-758-742-9; ISSN: 2184-4895

Proceedings Copyright © 2025 by SCITEPRESS — Science and Technology Publications, Lda.

Agile Retrospectives: What Went Well? What Didn’t Go Well? What Should We Do?

opment landscape, where many companies prefer to
work in a hybrid mode. Collecting team members’
perceptions regarding “What didn’t go well?” is one
of the key drivers to improve team work, therefore
it’s especially important to make each team member
feeling safe while sharing their perceptions on this
matter. Placing a virtual note on a negative aspects
might feel safer than placing a physical sticky note.
However, to achieve more anonymity, it should be
also hard/impossible to see to which section a per-
son is currently adding a note (e.g., a colleague sitting
nearby shouldn’t be able to see to which column you
currently adding a note). This aspect hasn’t been cov-
ered yet by the existing tools like Miro, TeamRetro,
or Atlassian Retrospective.

However, a further level of anonymisation is pos-
sible: the inputs on “What went well?” and “What
didn’t go well?” might be collected jointly (i.e., if
there is an option to not manually place a note directly
in the corresponding column), and after the collec-
tion sorted either manually by Scrum Master, or using
sentiment-based automation. For automation, appli-
cation of Large Language Models (LLMs) might be a
promising solution, which is worth to investigate.

Contributions: In this paper, we present our pre-
liminary analysis on whether LLMs might be appli-
cable for this sorting task. We conducted a study on
a manually created data set and analysed accuracy of
human vs. machine categorisation of the retro com-
ments using OpenAl’s ChatGPT-4 turbo model. We
discuss the lessons learned from this study and the
future work that follows from our results. We also in-
troduce a prototype of a web-based tool RetroAl++
focusing on its functionality to simply retro-meetings
and to make them more safe psychologically.

2 RELATED WORK

2.1 Gamification of Retros

There are several approaches to enhance Agile/Scrum
retros, and many of them propose using gamifica-
tion, for example, (Matthies, 2020; Jovanovi¢ et al.,
2016; Przybytek et al., 2022; Marshburn, 2018). A
case study (Przybylek and Kotecka, 2017) has been
conducted at Intel Technology Poland, focusing on
improving retros by adopting collaborative games.
The study (Ng et al.,, 2020) presented a replication
of (Przybylek and Kotecka, 2017). The replication
study has been conducted in Bluebay Poland and IHS
Markit Gdarisk. The authors also concluded that gam-
ified retros might led to better results than the stan-
dard retrospectives. Another study conducted at In-

tel Technology Poland (Mich and Ng, 2020) focused
on the use collaborative games. The results confirm
the original findings that game-based retros might
improve team members’ creativity, involvement, and
communication. While gamification might provide a
good solution to revitalising retros, in our work we
mainly focus on aspects related to interaction with
data related to project progress and to providing tool-
support for releasing potential tensions within retros.

2.2 Progress Overview

Another approach to make the retrospective meetings
more efficient, is to provide to the participants an in-
dependent overview of their progress. This could be
done manually by the Scrum Master or the Product
Owner, but manual solution might introduce some bi-
ases and lead to additional conflicts. Therefore, it
might be useful to get the overview auto-generated.
(Erdogan et al., 2018) analysed how and what kind
of historical Scrum project data might be required for
monitoring and statistical analysis to provide a solid
basis for retrospective meetings, e.g., analysis of the
correlation between story points and actual efforts as-
sociated with a product backlog item. A resent study
conducted by (Matthies and Dobrigkeit, 2021) aimed
to investigate usage of project data sources into Ag-
ile retro meetings, and concluded that a gather data
phase of might be an important part of a retro meet-
ing. In our prototype, we suggest to go further and to
provide the data-based input for the retros as part of
the RetroAl++ functionality. (Gaikwad et al., 2019)
investigated applicability of speech recognition tools,
Google Home and Amazon Alexa, for streamlining
the retrospective analysis and improving the time box-
ing of a retrospective by using voice activated com-
mands. (Hakim et al., 2024) presented a framework
for managing and evaluating changes within Scrum
process. The authors didn’t focus on providing an
input for retro-discussion, however, the elaborated
framework might be considered for this purpose.

2.3 Impact Analysis

Analysis of teams’ satisfaction with retros conducted
in their current projects and on issues the teams en-
counter was presented in the study of (Ng and Kuduk,
2024). The primary lessons learned of this case study
were related to teams’ willingness to implement ac-
tion items and misunderstandings related to the value
of discussing positive aspects during retro meetings.
A case study conducted in Bosch Engineering
GmbH by (Duehr et al., 2021) led to the conclusion
that agile working practices such as retrospectives

747

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

have a high potential to improve distributed collab-
oration. The data obtained within this study indicated
many aspects of the project work have been improved
after having retros, for example, overall quality of the
current exchange in the team, transparency of infor-
mation and knowledge in the team, frequency of in-
formation and knowledge shared in the team, and va-
riety and reliability of tools used in the team. Only
one aspect was assessed as being less good after the
retros (compared to before retros), but exactly this as-
pectis especially alarming. While the study of (Duehr
etal., 2021) didn’t focus on this point deeper, we con-
sider it extremely important: the only negative change
was the level of trust in the relationship between team
members dropped after the retrospective. This finding
might be a critical indication to importance of how ex-
actly we conduct the retro meetings. Therefore, our
aim is to find solutions that would not solely improve
information exchange within the team, but also help
creating a a psychologically safe environment and im-
proving the work climate in the team.

A large-scale and cross-sectional survey was con-
ducted by (Kadenic et al., 2023) to investigate the im-
pact of team maturity, team composition, Scrum val-
ues, Scrum roles, and Scrum events on the percep-
tion of being successful at Scrum. This study estab-
lished a significant correlation between maturity and
the perception of being successful at Scrum. There
are also a number of studies conducted in the uni-
versity settings, to analyse students’ perceptions of
Scrum process, see for example works by (Fernan-
des et al., 2021; Spichkova, 2019; Sun et al., 2019;
Torchiano et al., 2024). In our work, we aim espe-
cially on supporting novices, who are especially vul-
nerable, might be shy to express their thoughts and
suggest solutions during the retro meetings. Also, the
novices might benefit most from providing providing
additional help and more direct, simple instructions
on conducting retros.

3 METHODOLOGY

Large Language Models (LLMs) might provide sup-
port for completing time consuming and monotonous
tasks, where an algorithmic solution doesn’t work
well. However, the quality of LLM solution might
depend on many factors, and one of them is the fa-
miliarity of the LLM with the domain language and
the context. In this paper, we present our preliminary
analysis of applicability OpenAI’s ChatGPT for sup-
porting Agile/Scrum retros.

In our experiments, we applied OpenAI’s GPT-
4 Turbo. We created a benchmark dataset S of 200

748

retro-comments, which we manually annotated using
the following four labels:

* “went well”: this category included 66 comments
(let’s denote this set as Sp). The set Sp represents
33% of the benchmark dataset S.

* “did not go well”: this category included 99 com-
ments (let’s denote this set as Sy). The set Sy rep-
resents 49.5% of the benchmark dataset S. This
is the largest category because it is typically fo-
cus of retro meetings, which goal is continuous
improvement.

* “unclear/neutral”: this category included 28
comments (let’s denote this set as Syy). The set
Sy represents 14% of the overall set.

* “irrelevant”: this category included 7 comments
(let’s denote this set as Sy), i.e., 3.5% of S.

Each comment has been annotated by a single label,
multi-labelling has been excluded from our experi-
ment because we consider the specified labels as mu-
tually exclusive. Thus, we have

S=S8p USy USy USy,

where Sp N Sy =0, Sp N Sy =0, Sp N S; =0,
Sy NSy=0,Sy NS;=0,and Sy N S; = 0.

Based on the dataset S, we applied several Chat-
GPT prompts for auto-grouping/labelling the retro-
comments (prompt engineering will be discussed in
Section 4), and analysed the results both quantita-
tively and qualitatively. In our quantitive analysis, we
used the following notation:

* N denotes the size of the input set, N = |S|. In our
experiments, N = 200.

* Correct(S) denotes the overall set of comments
that have been annotated by the LLM correctly,
i.e., the set of comments where the category allo-
cation provided by ChatGPT fully matches to the
manual annotation. This set consists of four mutu-
ally exclusive subsets: Correct(Sp), Correct(Sy),
Correct(Sy), and Correct (Sy).

* Neorree: denotes number of comments that have
been annotated by the LLM correctly, i.e.,
Neorreert = |Correct(S)).

* Missing(S) denotes the overall set of comments
that have been provided in the input set, but have
been missing in the output set. This is an impor-
tant indicator of correctness, especially because a
situation where some comments disappear might
lead to a significant stress by the users (especially
in the situation when the users are already under
stress due to the nature of the discussion).

* Nr. of missing comments (Npissing) denotes num-
ber of comments within the set Missing(S).

Agile Retrospectives: What Went Well? What Didn’t Go Well? What Should We Do?

* Dupl(S) denotes the overall set of comments that
have been allocated by ChatGPT to more than one
category at the same time.

* Nr. of duplicated allocations denotes number of
multi-allocated comments: Ny, = [Dupl(S)|.

* Incor(S) denotes the overall set of comments
have been annotated by the LLM incorrectly, i.e.,
within a wrong category. This set doesn’t include
the cases of multi-allocations.

* Nincor = |Incor(S)| denotes number of comments
that have been annotated by the LLM incorrectly.

* Overall match (Matchyyerqn;) denotes the percent-
age of comments correctly annotated by Chat-
GPT, i.e. comments where the category alloca-
tion provided by ChatGPT is the exactly same as
manual annotation. For calculation of the overall
match, all comments that ChatGPT didn’t include
in its output are considered as incorrect annota-
tion:

Matchoyerail = Neorrect /N

* Matchgmpi. denotes a simplified representation of
the match analysis, where we don’t take into ac-
count any cases where ChatGPT didn’t include
comments in its output or reformulated the com-
ments:

MatChsimple = Ncorrecz/(N - Nmisxing)
This metric might be useful for the analysis in the

cases when the output set miss a significant num-
ber of the items.

In the current version of RetroAl++ we assume that
a comment should be allocated to either “What went
well” or “What did not go well” column. However,
it might be possible during a real life retro that a user
submits a neutral or even an irrelevant comment. It
would be unreasonable to allocate such comments to
either of above columns, so we included correspond-
ing categories in our analysis. On the other hand,
if a user adds comment to a particular column di-
rectly (manually), the content/wording of the com-
ment itself might be more vague/neutral, while the
placement in the particular comment will add miss-
ing positive/negative context, which we simply can-
not have if all comments are places automatically.
For example, a comment “Estimation” placed directly
in “What went well” would mean that someone per-
ceived the effort estimation within the current sprint
as good/successful, while the same comment placed
directly “What did not go well” would mean that
someone perceived the effort estimation within the
current sprint as inaccurate and requiring improve-
ments. When this comment is submitted for auto-
allocation, we cannot know whether it was meant pos-
itive or negative without any further context. Thus, a

better and more practical solution would be to provide
both manual and automated options for comment an-
notation. For these reasons, RetroAl++ provides both
functionalities to the users.

4 PROMPT ENGINEERING

The aim of prompt engineering is to optimise LLM in-
put to enhance the output performance, see the work
of (White et al., 2023). Our engineering strategy was
to elaborate instructions as clear as possible by adding
more explicit constraints to the input. In this paper,
due to the space restrictions, we limit our discussion
to three prompts to demonstrate the process of elab-
oration. Our overview of quantitive analysis is sum-
marised in Table 1.

Prompt 1 has been elaborated to investigate how
ChatGPT will work under conditions when the com-
ments should be group in only two categories, i.e., we
deliberately excluded categories “unclear/neutral”
and “irrelevant”. With this exclusion we aimed to
demonstrate the need for having these categories to
obtain more precise and meaningful auto-allocation.

Prompt 1: A team is doing their Scrum Ret-
rospective and the following comments have
been collected. Please group them in two
sets “What went well?” and “What did not go
well”. Each comment should be sorted in ei-
ther “What went well?” or “What did not go
well”: ...

Prompt 1 resulted in 48% of the comments have been
missing in the output obtained from ChatGPT. To
mitigate this issue, we added the corresponding con-
straint in the later prompts. The overall match value,
was quite low: only 41%. However, this low value
was mostly due to many missing comments. If we ap-
ply a simplified match analysis, where we don’t take
into account any missing comments, we obtain 78%,
which is on a similar level as we obtained for other
prompts.

Another refinement we applied in Prompts 2 and
3 was specifying a broader set of categories we pro-
posed for manual annotation in Section 3: Prompt 2
includes “unclear/neutral” but doesn’t include “ir-
relevant”, while Prompt 3 covers all four categories.

The overall match value was very close by both
Prompts 2 and 3, resulting in approx. 74%, while
Matchgippi. resulted in 77% and 75% with Prompt 2
providing a slightly better match values. The further
runs of these prompts resulted in match levels within
the same range close to 75 —77%. Surprisingly, in the

749

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

executions of Prompt 3, ChatGPT ignored the con-
straints on allocation of the comments to only one cat-
egory, i.e. we observed allocation of some comments
to both categories simultaneously.

Prompt 2: A team is doing their Scrum Ret-
rospective and the following comments have
been collected. Please group them in three
sets: “What went well?”, “What did not
go well” and “Unclear/neutral”’. Each com-
ment should be sorted in either “What went
well?”” or “What did not go well” or “Un-
clear/neutral”. Do not reformulate and do not
remove any comments. The list of comments:

Prompt 3: A team is doing their Scrum Ret-
rospective and the following comments have
been collected. Please group them in four sets:
“What went well?”, “What did not go well”,
“Unclear/neutral” and “Irrelevant”. Each com-
ment should be sorted in either “What went
well?” or “What did not go well” or “Un-
clear/neutral” or “Irrelevant”. Do not reformu-
late and do not remove any comments. The list
of comments: ...

Table 1: Quantitive analysis of prompt results.

Prompt 1 Prompt2 Prompt 3
Set size 200 200 200
Neorrect 81 148 147
NE et 34 47 48
N et 47 78 77
Ng)rrect 0 23 22
Ll‘orrect 0 0 0
Noear 23 45 40
NP o 1 17 17
Nig cor 16 17 16
iizcor 5 4 4
incor 1 7 3
N, missing 96 7 4
r}r:issing 31 2 0
N, rlr\l]issing 36 4 3
ilr{issing 23 1 1
rlnissing 6 0 0
Naupi 0 0 9
Nyl 0 0 1
Nl 0 0 3
N 0 0 4
Nyl 0 0 1
Matchgimpre | 78% 77% 75%
Matchyyeran | 41% 74% 74%

750

It is worth to mention that out of nine comments that
have been allocated to multiple (two) categories by
ChatGPT, only one comment has been allocated com-
pletely incorrectly, while for each of eight other com-
ments one of their allocations was correct. From these
observations, we conclude that ChatGPT might strug-
gle with allocation of neutral or irrelevant comments.
This issue might be mitigated by introducing the cor-
responding rules for conduction retros.

As Prompt 2 generally provided a slightly better
match value, we consider it as a more promising op-
tion. In the case of Prompt 3, ChatGPT performed
not so good mostly because of the issues with multi-
allocation of comments, where the majority of the is-
sues were related to having both unclear/neutral and
irrelevant categories.

S LESSONS LEARNED

In this section we summarise the core lessons learned
and briefly discuss solutions we propose to deal with
the observed issues while applying ChatGPT for anal-
ysis of retrospectives.

Lesson Learned 1: Even after adding a constraint
than none of the comments should be removed or
reformulated, some comments have been missing.
This happened not at a such large scale as we ob-
served for Prompt 1, but was still significant: while
96 comments have been missed in the response to
Prompt 1, only 4-7 comments have been missed in
case of Prompts 2 and 3 (48% vs. 2-4%). This might
be a critical issue, as having comments disappeared
might create unnecessary stress and tensions.
Proposed Solution: An algorithmic correction in this
case might be helpful: We propose to introduce a sim-
ple algorithmic check whether all items from the in-
put set S are covered in the auto-allocated sets created
by ChatGPT. If some comments have been identified
as missing in the auto-allocation, they should be pro-
vided to the Scrum Master for manual allocation. As
the number of such comments is generally small, the
manual allocation will not be time-consuming.
Lesson Learned 2: ChatGPT consistently struggled
to categorise comments that would require knowledge
of Agile/Scrum and corresponding terminology, e.g.,
“Our daily standups were 45 minutes long”, which is
clearly negative from Scrum perspective (meetings of
this type should be very short, approx. 10-15 min-
utes). Another interesting example is “We played
planning poker at the meeting”: this comment is
clearly positive from Scrum perspective (the team ap-
plied a good-practice method for effort estimation),

Agile Retrospectives: What Went Well? What Didn’t Go Well? What Should We Do?

but ChatGPT in different runs labelled it either irrele-
vant or unclear/neutral or omitted completely.
Proposed Solution: It would be inefficient to expand
a prompt by adding corresponding messages, how-
ever, having a pre-trained model might solve the is-
sue. Please also note that this identified issue would
be irrelevant if the idea of retros is applied outside of
Agile/Scrum software development process.

Lesson Learned 3: ChatGPT also struggled with
vaguely formulated comments and comments includ-
ing “but’-statements. For example, “The laptop bat-
tery become empty during the demo, but we had a
back-up” is rather positive, because the team resolved
their issue successfully. Nevertheless, ChatGPT tends
to label it as unclear/neutral or omit completely from
the output set.

Proposed Solution: It is generally advisable to avoid
this type of comments in retros to reduce the cogni-
tive load of other participants. A reasonable solution
to avoid the issue would be providing to the partici-
pants clear instructions on how the comments should
be formulated to facilitate a more productive discus-
sion.

6 RetroAl++

In our RetroAl++ prototype, we aim to automate and
refine the practical application of Agile/Scrum pro-
cesses within Sprint Planning and and Retrospectives.
RetroAl++ offers suggestions for sprint organisation
as well as insights for retrospective reflection. The
prototype combines Al-based planning logic with a
more traditional algorithmic foundation in order to
enhance the quality of insights produced by the tool.

The general system architecture of our prototype
is presented in Figure 1. The front-end of RetroAl++
has been built using JavaScript and React. For back-
end solution, this project uses Java and DynamoDB
tables. The prototype runs on AWS.

RetroAl++ provides tool support for sprint plan-
ning and retrospective analysis, but in this paper we
focus on its functionality dedicated to the facilitation
of retrospective meetings (retros) and provide only
short overview of other functionalities.

Figure 2 presents a retro-dashboard, which pro-
vides the overview of all retro-boards relevant to the
user. The retro-dashboard allows to see the follow-
ing elements useful for the project analysis and retro-
meetings:

* Names of the projects, for which retro-meetings
might be conducted.

* The status of each retro-board: Inactive means
that the retro-meeting has been completed and

API call @
(| OpenAI
API

AWS Ecosystem

Calls to Execute Lambda execute database
Backend API Function | &) operations | E 7

Amazon AP AWS Lambda Amazon
Gateway DynamoDB

Fetch Frontend E
= Application

Browser Amazon S3

Register or

Amazon Cognito

Figure 1: RetroAl++ system architecture.

Retro List

Project Name. Status Rating (Score) Sprint Nu

Figure 2: RetroAl++: retro-dashboard.

users cannot add further comments to the board,
while Active means that the board is currently ac-
tive and comments can be added. This function-
ality might be useful if a team prefers to collect
comments before joining together to a meeting.

* Rating/score of retro/meetings, based on partici-
pants feedback.

e Sprint number, for which the last retro-meeting
has been held or is currently in progress.

The retro-dashboard also provides search and filtering
functionality to simplify finding the relevant project
and meeting. This functionality might be especially
useful when Scrum Master, product Owner and/or
Scrum team members are involved in multiple project
running simultaneously.

In the rest of this section, we would like to discuss
in detail three points, which we consider especially
important for retro-meetings:

¢ the overall structure of RetroAl++ retro board,

e RetroAl++ functionality to group similar com-
ments to decrease cognitive load of users, and

e RetroAl++ functionality to present sprint and
retro-meeting summary.

751

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

Figure 3 presents RetroAl++ retro board, which
consists of three columns “What went well” and
“What didn’t go well”, and “Actions”. The advan-
tage of the RetroAl++ retro board is that the com-
ment can be added in the input field that is located
above the columns and isn’t associated with any of
them, i.e., none can see to which of the columns the
input is written. Then the allocation of comments to
the columns is done automatically, under support of
Open AL

An alternative solution would be to get the com-
ments allocated to the columns manually, e.g., by the
Scrum Master facilitating the retro meeting, but this
would slow down the meeting. In our prototype we
use ChatGPT API to provide a preliminary solution
for this task.

it £ Cotn 3 et 3 Gt £3 Godeg ot

RETROAI++

coffee4U_green: Sprint 4

€ Backioproea)

(ot D)

What went well What did not go well Action

+ Write Action

Figure 3: RetroAl++ retro board: General structure (light
version of the UI).

Often, team members submit comments that are
semantically similar: if something was very good or
upsetting during a sprint, it’s very likely that many
team members will have the same feelings about it.
It makes sense to visually group similar comments as
this decreases the cognitive load of the board analy-
sis. We implemented this idea by presenting similar
comments within a group highlighted with a colour
frame: blue for “What went well” and red for “What
didn’t go well”, see Figure 4.

retroai+_green: Sprint 3

(€ saokrormea)

What went well What did not go well Action

+ Write Action

Figure 4: RetroAl++ retro board: grouping similar com-
ments.

752

In the current version of the prototype, group-
ing has been implemented as a manual functionality
(which can be applied by any team member), but as
the future work we would like to explorer applica-
tion of Al approaches to allow the team have this bor-
ing but important task done for them automatically.
As preliminary solution, we provide a functionality to
sort comments by the frequency of their appearance,
which might streamline the currently manual process.

RetroAl++ can also provide a summary of a
sprint, generated using ChatGPT based on a Kan-
ban board for this sprint. This information can serve
as a starting point for a retro-meeting, as the auto-
generated summary provides a short overview of the
team’s progress over the sprint wrt. to the Sprint back-
log, i.e., wrt. the plan the team had for this sprint.

7 THREATS TO VALIDITY

There are several threats to validity of our experi-
ments. The first threat is the limited scope of the
benchmark dataset, which was limited to 200 retro-
comments and created manually, which means it ob-
viously doesn’t cover fully the infinite set of all pos-
sible retro-comments that can be written in the real
life meetings. However, our manually created bench-
mark dataset has a significant size and covers typical
points that arise in the retrospectives in real industrial
projects.

The second threat is the limited number of runs for
each prompt presented in the experiment analysis in
Sections 4 and 5. While running our experiments, we
observed that the results of prompt executions might
differ slightly, i.e., if we run the same prompt multiple
times the responses of ChatGPT might be not exactly
the same. However, we haven’t observed any statis-
tically significant difference, therefore due to space
limit we restrict only discussion to the analysis of a
single run per each prompt.

Also, the dataset used in our experiment has been
created and manually labelled by the second author
and then refined and extended by the first author,
based on the experience from industrial projects. The
analysis and classification of the ChatGPT responses
has been done manually by the authors. To mitigate
the issues with incorrect labelling and classification,
we used peer-reviewing strategy.

8 CONCLUSIONS

In this paper, we presented our ongoing research on
streamlining Agile/Scrum processes with the support

Agile Retrospectives: What Went Well? What Didn’t Go Well? What Should We Do?

of Al approaches. We discussed our experiments with
OpenATI’s ChatGPT-4 turbo to analyse the applicabil-
ity of generative Al for supporting Agile/Scrum ret-
rospective meetings and summarised the core lessons
learned from these experiments. We also presented
our prototype tool RetroAl++, whose aim is to au-
tomate and simplify Agile/Scrum processes for soft-
ware development projects. We especially focused on
RetroAl++ functionality to facilitate retro-meetings.
Future work: As our future work, we plan to conduct
experiments on a larger dataset and to refine/extend
our prototype.

ACKNOWLEDGEMENTS

We would like to thank Shine Solutions for
sponsoring this project under the research grant
PRJ00002505, and especially Branko Minic and
Adrian Zielonka for priding their industry-based ex-
pertise and advices. We also would like to thank stu-
dents who contributed to creation of earlier versions
of the RetroAl tool: Weimin Su, Ahilya Sinha, Hib-
baan Nawaz, Kartik Kumar, Muskan Aggarwal, Justin
John, Shalvi Tembe, Niyati Gulumkar, Vincent Tso,
and Nguyen Duc Minh Tam.

REFERENCES

Al-Saqqa, S., Sawalha, S., and AbdelNabi, H. (2020). Agile
software development: Methodologies and trends. Int.
Journal of Interactive Mobile Technologies, 14(11).

digital/ai (2023). 17th state of agile report.

Duehr, K., Efremov, P., Heimicke, J., Teitz, E. M., Ort,
F., Weissenberger-Eibl, M., and Albers, A. (2021).
The positive impact of agile retrospectives on the col-
laboration of distributed development teams—a prac-
tical approach on the example of Bosch Engineering
GMBH. Design Society, 1:3071-3080.

Erdogan, O., Pekkaya, M. E., and Gok, H. (2018). More
effective sprint retrospective with statistical analysis.
Journal of Software: Evolution and Process, 30(5).

Fernandes, S., Dinis-Carvalho, J., and Ferreira-Oliveira,
A. T. (2021). Improving the performance of student
teams in project-based learning with Scrum. Educa-
tion sciences, 11(8):444.

Gaikwad, P. K., Jayakumar, C. T., Tilve, E., Bohra, N., Yu,
W., and Spichkova, M. (2019). Voice-activated solu-
tions for agile retrospective sessions. Procedia Com-
puter Science, 159:2414-2423.

Hakim, H., Sellami, A., and Ben-Abdallah, H. (2024).
MPED-SCRUM: An automated decision-making
framework based measurement for managing require-
ment change within the Scrum process. In ENASE,
pages 571-581.

Jovanovié, M., Mesquida, A.-L., Radakovié¢, N., and Mas,
A. (2016). Agile retrospective games for different
team development phases. Journal of Universal Com-
puter Science, 22(12):1489-1508.

Kadenic, M. D., Koumaditis, K., and Junker-Jensen, L.
(2023). Mastering Scrum with a focus on team ma-
turity and key components of Scrum. Information and
Software Technology, 153:107079.

Khanna, D. and Wang, X. (2022). Are your online agile ret-
rospectives psychologically safe? the usage of online
tools. In XP’22, pages 35-51. Springer.

Marsden, N., Ahmadi, M., Wulf, V., and Holtzblatt, K.
(2021). Surfacing challenges in scrum for women in
tech. IEEE Software, 39(6):80-87.

Marshburn, D. (2018). Scrum retrospectives: Measuring
and improving effectiveness. In SAIS.

Matthies, C. (2020). Playing with your project data in scrum
retrospectives. In ACM/IEEE 42nd International Con-
ference on Software Engineering, ICSE °20, page
113-115. ACM.

Matthies, C. and Dobrigkeit, F. (2021). Experience vs data:
A case for more data-informed retrospective activities.
In XP’21, pages 130-144. Springer.

Mich, D. and Ng, Y. Y. (2020). Retrospective games in
Intel Technology Poland. In FedCSIS, pages 705-708.
IEEE.

Ng, Y. Y. and Kuduk, R. (2024). Implementing action items
over improving the format of retros. In SAC, pages
853-855.

Ng, Y. Y., Skrodzki, J., and Wawryk, M. (2020). Playing
the sprint retrospective: a replication study. In Ad-
vances in Agile and User-Centred Software Engineer-
ing, pages 133—141. Springer.

Przybyltek, A., Albecka, M., Springer, O., and Kowalski,
W. (2022). Game-based sprint retrospectives: multi-
ple action research. Empirical Software Engineering,
27(1):1.

Przybylek, A. and Kotecka, D. (2017). Making agile ret-
rospectives more awesome. In FedCSIS, pages 1211-
1216. IEEE.

Schwaber, K. and Sutherland, J. (2011). The Scrum guide.
Scrum Alliance, 21(1):1-38.

Spichkova, M. (2019). Industry-oriented project-based
learning of software engineering. In Int. conference on
engineering of complex computer systems (ICECCS),
pages 51-60. IEEE.

Sun, C., Zhang, J., Liu, C., King, B. C. B, Zhang, Y., Galle,
M., Spichkova, M., and Simic, M. (2019). Software
development for autonomous and social robotics sys-
tems. In Intelligent Interactive Multimedia Systems
and Services, pages 151-160. Springer.

Torchiano, M., Vetro, A., and Coppola, R. (2024). Teaching
scrum with a focus on efficiency and inclusiveness. In
EASE, pages 595-599.

White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert,
H., Elnashar, A., Spencer-Smith, J., and Schmidt,
D. C. (2023). A prompt pattern catalog to enhance
prompt engineering with ChatGPT. arXiv preprint
arXiv:2302.11382.

753

