EM-Join: Efficient Entity Matching Using Embedding-Based Similarity
Join

Douglas Rolins Santana', Paulo Henrique Santos Lima? and Leonardo Andrade Ribeiro?
Vnstituto Federal de Educacgdo, Ciéncia e Tecnologia de Goids (IFG), Goidnia, GO, Brazil
2Instituto de Informdtica (INF), Universidade Federal de Goids (UFG), Goidnia, GO, Brazil

Keywords:

Abstract:

Data Cleaning and Integration, Deep Learning, Entity Matching, Experiments and Analysis.

Entity matching in textual data remains a challenging task due to variations in data representation and the

computational cost. In this paper, we propose an efficient pipeline for entity matching that combines text
preprocessing, embedding-based data representation, and similarity joins with a heuristic-driven method for
threshold selection. Our approach simplifies the matching process by concatenating attribute values and lever-
aging specialized language models for generating embeddings, followed by a fast similarity join evaluation.
We compare our method against state-of-the-art techniques, namely Ditto, Ember, and DeepMatcher, across
13 publicly available datasets. Our solution achieves superior performance in 3 datasets while maintaining
competitive accuracy in the others, and it significantly reduces execution time—up to 3x faster than Ditto. The
results obtained demonstrate the potential for high-speed, scalable entity matching in practical applications.

1 INTRODUCTION

Entity matching (EM) is a critical step in data integra-
tion, aiming to identify records that refer to the same
real-world entity within or across datasets. The task
is challenging with textual data due to misspellings,
format variations, and incomplete information. Tra-
ditional EM methods, including rule-based systems
and classical machine learning models, require exten-
sive manual effort for rule crafting and feature engi-
neering (Elmagarmid et al., 2007). In recent years,
deep learning (DL) methods have advanced the field
by automatically learning representations of records,
reducing the need for manual feature extraction and
improving accuracy (Mudgal et al., 2018).

One of the most prominent approaches in modern
EM is Ditto (Li et al., 2023), which leverages pre-
trained language models like BERT (Devlin et al.,
2019) to generate embeddings for entity representa-
tions. Ditto has demonstrated state-of-the-art results
in matching accuracy, particularly when dealing with
complex datasets containing noisy data and scarce
training examples. However, despite its effectiveness,
Ditto suffers from high computational costs, making
it less practical for large-scale or real-time applica-
tions. Additionally, it often requires fine-tuning on
specific datasets, which can limit its generalizability.

In this paper, we propose EM-Join, a novel

402

Santana, D. R., Lima, P. H. S. and Ribeiro, L. A.

EM-Join: Efficient Entity Matching Using Embedding-Based Similarity Join.
DOI: 10.5220/0013483700003929

Paper published under CC license (CC BY-NC-ND 4.0)

pipeline for entity matching that addresses both the
accuracy and efficiency challenges. EM-Join lever-
ages specialized language models to generate embed-
dings for concatenated attribute values, simplifying
record representation. We then perform a similar-
ity join using a heuristic method to select the best
threshold, which is subsequently employed to deter-
mine whether two records represent the same entity.
By reducing the complexity of the embedding genera-
tion process and optimizing the similarity join phase,
EM-Join offers significant improvements in runtime
without sacrificing accuracy.

We evaluated our method against Ditfo using 13
publicly available datasets. Our method outperforms
Ditto in 3 datasets while achieving comparable results
in the remaining ones, with a notable reduction in ex-
ecution time —up to 3 times faster than Ditfo. Addi-
tionally, we compared our solution with Ember (Suri
et al., 2022) and DeepMatcher (Mudgal et al., 2018),
two other entity matching solutions. Our EM-Join
method outperformed both Ember and DeepMatcher
in accuracy across all datasets. These results demon-
strate that our method provides a compelling trade-off
between efficiency and effectiveness, making it a vi-
able option for real-world applications where perfor-
mance and speed are critical.

In Proceedings of the 27th International Conference on Enterprise Information Systems (ICEIS 2025) - Volume 1, pages 402-409

ISBN: 978-989-758-749-8; ISSN: 2184-4992

Proceedings Copyright © 2025 by SCITEPRESS — Science and Technology Publications, Lda.

EM-Join: Efficient Entity Matching Using Embedding-Based Similarity Join

Title Author |Publisher Description Product Company | Price
Pride and |Jane Penguin Notebook Dell Inspiron 15,17 11* Geragao,
U|Prejudice |Austen |Classics | "|16GB RAM, SSD 512GB, Windows 11 f1|[Phone 16 Pro |Apple 999
H Pride & Jane Penguin b Dell Inspiron 15, Intel Core i7, 16GB RAM, H Apple iPhone 999
“[Prejudice |Austen |Classics “|512GB SSD, Win 11 Home “[16 Pro
Pride and Penguin Laptop Dell Inspiron 15, 11th Gen i7, 16GB, .
blprejudice [AU |Classics | “[512GB SSD, W11 fs|iPhon 16Pro |Appl 999

(a) Structured data.

(b) Textual data.

(c) Dirty data.

Figure 1: Examples of datasets illustrating entity matching scenarios, including structured data, textual data, and dirty data.
Each dataset contains records that can be considered matches, highlighting challenges such as structural differences, textual

variations, and data imperfections.

2 BACKGROUND

2.1 Problem Definition

We follow the entity matching (EM) problem formal-
ization used in (Mudgal et al., 2018). Given two
data sources A4 and B with the same schema, each
record represents a real-world entity. The objective
is to identify the largest binary relation M C 4 x B,
where each pair (a,b) € M denotes that a and b refer
to the same entity. If the task targets duplicate detec-
tion within a single dataset, we have 4 = B.

A labeled training dataset 7 is composed of tuples
{(@, b,)} where {(a,b)}}7} € 4 x B and r is
a categorical label indicating whether a pair matches
(match) or does not match (no-match). We use then T
to train a classifier that categorizes pairs as “match”
or “no-match. Figure 1 illustrates the EM challenges
we address in this work, such as handling structured,
textual, and dirty data.

2.2 Embeddings

Embeddings represent data as dense vectors, pre-
serving semantic relationships. Early techniques,
such as Word2Vec (Mikolov et al., 2013), capture
word similarities but lack contextual adaptation. Ad-
vances in Transformer-based models (Vaswani et al.,
2017) have enabled the creation of contextual em-
beddings. Sentence-BERT (Reimers and Gurevych,
2019), for instance, modifies the BERT architecture
into a Siamese network structure to produce seman-
tically meaningful, context-rich sentence representa-
tions, which is instrumental for tasks like EM.

2.3 Similarity Join

A similarity join identifies pairs of similar records
from two datasets using a similarity function.

Definition 1 (Similarity Join). Given two sets of vec-
tors, Viq and Vig, and a threshold T, the similarity join
returns all pairs {(a,b),s) such that sim(a,b) = s > 1.

State-of-the-art techniques for similarity search
on vector embeddings leverage proximity graph in-
dexes to enhance efficiency. A prime example of such
an index is the Hierarchical Navigable Small World
(HNSW), which offers an excellent balance between
speed and accuracy (Malkov and Yashunin, 2020).
(Santana and Ribeiro, 2023) adapted HNSW’s inter-
nal algorithms to optimize similarity join processing.

3 RELATED WORK

The EM problem, studied since the 1950s (New-
combe et al., 1959), has been addressed by commu-
nities like Databases, NLP, and Machine Learning,
under terms like entity resolution, deduplication, and
record matching. DeepMatcher (Mudgal et al., 2018),
Ditto (Li et al., 2023), and Ember (Suri et al., 2022)
are key DL-based solutions illustrating the evolution
of EM methods. DeepMatcher uses flexible architec-
tures with embeddings and attention mechanisms to
process tuple pairs, outperforming previous learning-
based techniques. Ditto fine-tunes pre-trained Trans-
formers (BERT, RoBERTa) for EM tasks, support-
ing varying schemas and hierarchical data with high
accuracy. (Lima et al.,, 2023) presented a com-
parative evaluation of DeepMatcher and Ditto on a
wider range of textual patterns. Ember improves con-
text enrichment in structured data through similarity
joins, using Transformer-based embeddings to assem-
ble fragmented data about entities.

EM solutions often rely on blocking techniques
to reduce the quadratic complexity of the problem.
Notably, the work in (Thirumuruganathan et al.,
2021) defines a space of DL solutions for blocking.
Other related problems in NLP and data integration,

403

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

like entity linking (Shen et al., 2015), entity align-
ment (Leone et al., 2022), and coreference resolution
(Clark and Manning, 2016), often share interchange-
able solutions. A review of pre-DL literature is in (El-
magarmid et al., 2007), and DL-based techniques are
discussed in (Barlaug and Gulla, 2021).

4 EM-JOIN SOLUTION

EM-Join, our proposed solution to the EM problem,
is structured into three stages: Preprocessing, Data
Representation, and Join, as shown in Figure 2. In-
spired by Ember, which focuses on data transforma-
tion and context enrichment, EM-Join is tailored to
the EM problem, optimizing accuracy and efficiency
in large-scale data scenarios.

In the first stage, Preprocessing, input data is
loaded, and attributes from each record are concate-
nated into a single sentence, separated by the <SEP>
token. This process creates a unified textual represen-
tation for each record in datasets A4 and ‘B, ensuring
that all relevant attributes are captured and minimiz-
ing redundancy.

The second stage, Data Representation, involves
transforming the concatenated records into embed-
ding vectors using models from the Massive Text
Embedding Benchmark (MTEB) (Muennighoff et al.,
2023). The selected model, loaded from Hugging
Face!, is fine-tuned to adapt to the dataset’s char-
acteristics. After fine-tuning, the model generates
high-dimensional embeddings for each record in the
datasets, resulting in sets of vectors V4 and V. All
vectors are further normalized to ensure consistency
and comparability.

Algorithm 1: Join Step.

: Sets of vectors Vg, Vig; labeled
training data 7'; set of vectors
Vira = {ala € V4 and a appears in
T}, set of vectors Virg = {b|b € Vg
and b appears in 7 }; initial similarity
threshold 1;
Output: Matching results M

1.8« SimJoin((’Vr[/q, ‘VTQ;,TU));

2 7" + FindOptimalThreshold($,7)

3 M+ Sim/oin((’V,q, 'VQ;,’C*))

4 return M

Input

The final stage, Join, identifies record pairs in the
input datasets that are considered matches, classifying

Uhttps://huggingface.co

404

Algorithm 2: SimJoin(Va, Va,7).

Input : Set of vectors V4 and Vig; similarity
threshold ©
Output: A set M containing all scored pairs
((a,b),s) s.t., (a,b) € Vg x Vg, and
sim(a,b) =s>=1
I < BuildIndex(V7)
foreach b € V3 do
A « I.Search(b,T)
fora € 4 do
s < Sim(a,b)
if s >=1 then
| M — MU((a,b),s)

QSN R W N =

8 return M

Algorithm 3: FindOptimalThreshold.

Input : Sample Matching results S, labeled
training data ‘T’

Output: Optimal threshold t*

Sort § by similarity score s in descending
order

Initialize F1* < 0, F1 + 1, T + max(S]s]),
and At < 0.05

3 while FI > F1* do

4 | S« A{(a,b,s)eS|s>1}

5 | F1 <« ComputeF1(S;,T)

6 | if F1 > F1* then

- LFl* +~F1

8

-

[5]

T 7T

9 T+ T—AT
10 R={t"+k-ot|ke{-4,-3,...,4},k#
0,8t =0.01}
1 forte X do
2 | S+ {(a,bs)eS|s>1}
13 | F1+< ComputeF1(S;,7)
14 if F1 > F1* then
15 F1* «+ F1
Lr*(—r

17 return T*

pairs with a similarity score above a defined thresh-
old. The optimal threshold is determined heuristi-
cally, as outlined in Algorithm 1.

Initially, a similarity join is performed on labeled
subsets of V7 and Vg (Line 1) with a low starting
threshold (e.g., 0.6) to ensure high recall. After op-
timizing the threshold using labeled data (Line 2), it
is applied to the full datasets, retaining only pairs ex-
ceeding the threshold as matches (Line 3).

EM-Join: Efficient Entity Matching Using Embedding-Based Similarity Join

. Data
Preprocessing

Representation

Join

- Attributes to Single Text
- Token <SEP> as Separator

Table B

- Fine-tuning

- Languagem Model MTEB

- Generate Embeddings

- Use Optimized Index
- Find Optimal Threshold
- Perform Similarity Join

Figure 2: EM-Join architectural template.

Algorithm 2 describes the similarity join pro-
cess, which evaluates cosine similarity for vector
pairs (a,b) € V7 X Vg and retains pairs satisfying
sim(a,b) > 1. To optimize efficiency, an HNSW index
on V7 is built (Line 1). Candidate pairs are formed
by probing the index with the vectors in ¥ and those
pairs meeting the similarity constraint are sent to the
output (Lines 2-7).

The FindOptimalThreshold function (Algorithm
3) iteratively adjusts the threshold to maximize the
Fl1-score. Initially, similarity scores are sorted (Line
1), and the threshold is reduced in decrements of At
until no further Fl-score improvement is observed
(Lines 3-9). A finer adjustment follows within a
small range to determine the optimal threshold (Lines
11-16), which is then returned (Line 17).

EM-Join enhances precision and recall through
heuristic-based threshold selection. However, it relies
on labeled data, limiting its applicability in settings
where such data is scarce. Alternative strategies are
required for unsupervised threshold estimation.

Although F1-score is used for threshold selection,
the method can be adapted to prioritize precision or
recall based on specific requirements. For regula-
tory compliance or financial reconciliation, precision
can be emphasized to ensure highly reliable matches.
Conversely, for tasks like medical record linking or
fraud detection, recall can be maximized to improve
coverage. This adaptability makes EM-Join a versa-
tile solution for various EM applications.

S EXPERIMENTS AND RESULTS

This section presents an experimental study to eval-
uate the effectiveness of the EM-Join solution. EM-
Join is compared to three established solutions: Deep-
Matcher, Ditto, and Ember. The evaluation is per-
formed in two phases. First, we conduct an Effective-
ness Analysis using 13 publicly available datasets to
assess accuracy with the F1-score metric. Following
that, we perform a Runtime Evaluation, comparing
EM-Join exclusively to Ditto, which showed the best

effectiveness results. The comparison highlights the
strengths and limitations of EM-Join in terms of both
accuracy and execution time. The EM-Join source
code is available on GitHub?.

5.1 Effectiveness Analysis

In this section, we evaluate the effectiveness of the
proposed EM-Join solution using the F1-score metric,
which provides a balanced measure of both precision
and recall, making it particularly suitable for evalu-
ating the performance of entity matching models in
identifying duplicate records.

5.1.1 Datasets

We used 13 datasets from the DeepMatcher study
(Mudgal et al., 2018), publicly available on GitHub?,
also employed in evaluations of Ember and Ditto.
These datasets cover various domains, including
products, publications, and businesses, with candi-
date pairs sampled from two tables with the same
schema. The positive rate ranges from 9.4% to 25%,
and the number of attributes per dataset ranges from
1 to 8. For consistency, we use the same 3:1:1 train-
ing, validation, and test splits. Table 1 summarizes the
datasets, noting that some, like Abt-Buy and Com-
pany, are text-heavy, while others, like DBLP-ACM
and iTunes-Amazon, contain noisy data. For compar-
ison, we considered the results of the best-performing
versions of DeepMatcher, Ditto, and Ember.

5.1.2 Experimental Setup

The EM-Join solution optimizes performance through
specific parameters. In the data representation
phase, two embedding models, all-MiniLM-L12-
v2 and all-mpnet-base-v2, with dimensions of 384
and 768, respectively, were selected for their ef-
ficiency and accuracy in semantic search (Muen-

Zhttps://github.com/pauloh48/EM-Join
3https://github.com/anhaidgroup/deepmatcher/blob/
master/Datasets.md

405

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

Table 1: Description of datasets.

Type Dataset Domain Size # Positives | # Attributes
Amazon-Google software 11,460 1,167 3
BeerAdvo-RateBeer beer 450 68 4
DBLP-ACM citation 12,363 2,220 4
Structured DBLP-Scholar citation 28,707 5,347 4
Fodors-Zagats restaurant 946 110 6
1Tunes-Amazon music 539 132 8
Walmart-Amazon electronics 10,242 962 5
Textual Abt-Buy product 9,575 1,028 3
Company company | 112,632 28,200 1
iTunes-Amazon music 539 132 8
Dirty DBLP-ACM citation 12,363 2,220 4
DBLP-Scholar citation 28,707 5,347 4
Walmart-Amazon electronics | 10,242 962 5

Table 2: Fl1-scores of EM-Join compared to Ember (EMB), Deepmatcher (DM) and Ditto (DIT). Model 1 is all-MiniLM-
L12-v2 and model 2 is all-mpnet-base-v2. Exact uses the IndexPlatIP index from the Faiss library that returns exact results,
while HNSW is the index that returns approximate results. FT stands for Fine-tuning.

Type Dataset EMB | DM | DIT EM-JOIN
(f1) (f1) (f1) Exact | HNSW | Exact Best
Model | FTon | FTon | FT off | Threshold
(fn) (f1) (f1) Found
Amazon-Google | 7043 | 69.3 | 75.58 ; ;g:gz ;g:gz ‘Z’LS 8:;;
BeerAdvo-RateBeer | 91.58 | 72.7 | 94.37 é gg;é gggg gggz 00895
DBLP-ACM 98.05 | 98.4 | 98.99 é ggﬁ ggﬁ 2(6)?1; 822
Structured | DBLP-Scholar 5788 | 947 | 95.6 | 8 | S48 | B8 | DD
Fodors-Zagats 88.76 | 100 | 100 é ggig ggig zggé 8;?
Itunes-Amazon 84.92 | 88.5 | 97.06 ; 34213491 34212491 ggg; 82;
Walmart-Amazon 69.6 | 67.6 | 86.76 é ;;;491 ;;ég g } gg 8;2
e s we | LR RE n o
oy [a1 [o27 [oaas | 1| ot por oo
DBLPACM | 9758 | 981 | 9908 | 1| 932 | 9932 |97 | 086
1 94.6 94.6 86.01 0.77
Dirty DBLP-Scholar 58.08 | 93.8 | 95.75 % ggég zgég 2(1)35 06785
Itunes-Amazon 64.65 | 794 | 95.65 5 94:74 94:74 76:19 0.é3
Walmart-Amazon | 6743 | 538 | 85.69 | JTI8 LTIl L 27 | BT

nighoff et al., 2023). Fine-tuning was done using
the sentence-transformers library with fixed param-
eters: 40 epochs, batch size of 8, learning rate of
2 x 1075, and ConstantLR scheduler. In the Join

406

phase, labeled data from the train and valid files were
used to determine the optimal threshold, starting with
0.6. The Faiss library (Johnson et al., 2019) was
used for similarity search, with IndexFlatIP for exact

EM-Join: Efficient Entity Matching Using Embedding-Based Similarity Join

matches and HNSW for approximate matches, config-
ured with parameters M = 64, e fConstruction = 32,
and e fSearch = 32. A heuristic approach was applied
to handle the top-k limitation in Faiss. All experi-
ments were conducted in Google Colaboratory using
a GPU Nvidia Tesla T4 with 15 GB of memory.

5.1.3 Results

Table 3: Average F1-Score for each dataset type (Struc-
tured, Textual and Dirty) for EM-Join compared to Ember
(EMB), Deepmatcher (DM) and Ditto (DIT).

Type EMB | DM | DIT | EM-Join
Structured | 80.17 | 84.46 | 92.62 90.35
Textual 79.68 | 77.75 | 91.59 87.96
Dirty 71.94 | 81.28 | 94.03 91.61
Average 77.26 | 81.16 | 92.75 89.97

Table 2 summarizes EM-Join’s effectiveness com-
pared with the competitors, showing Fl-scores for
different configurations, including IndexFlatIP and
HNSW indexes with and without fine-tuning. EM-
Join performed competitively, outperforming Ditto
in three datasets (Amazon-Google, structured; and
DBLP-ACM, both structured and dirty), achieving
higher Fl-scores in cases such as Amazon-Google
(78.06 vs. 75.58) and DBLP-ACM structured (99.32
vs. 98.99). No significant differences were observed
between the exact and approximate HNSW indexes,
except in DBLP-Scholar and Walmart-Amazon,
where exact fine-tuning marginally outperformed
HNSW. While Ditto had higher scores in some
datasets, such as DBLP-Scholar and Fodors-Zagats,
EM-Join’s performance was dataset-dependent, with
fine-tuning showing a marked improvement, as seen
in Amazon-Google where disabling fine-tuning re-
sulted in lower F1-scores (47.78 and 41.90).

Table 3 presents the average F1-Scores for all
approaches across Structured, Textual, and Dirty
datasets. Ditto achieved the highest average F1-Score
(92.75), followed by EM-Join (89.97). EM-Join per-
formed strongest on Structured datasets (90.35), close
to Ditto (92.62), but showed a gap on Textual datasets
with an F1-Score of 87.96, compared to Ditto’s 91.59.
On Dirty datasets, EM-Join achieved 91.61, perform-
ing worse than Ditto (94.03) but outperforming Em-
ber (71.94) and DeepMatcher (81.28). These results
highlight EM-Join’s strengths in Structured and Dirty
datasets, with potential for improvement on Textual
datasets, particularly for unstructured data.

Table 4 details the execution time for various
steps in the EM-Join process, comparing fine-tuning,
embedding generation, and similarity joins with the
exact (IndexFlatIP) and approximate (HNSW) in-
dices. The analysis includes two embedding mod-

els: all-MiniLM-L12-v2 (Model 1) and all-mpnet-
base-v2 (Model 2). The HNSW index significantly re-
duced execution time, with the ltunes-Amazon dataset
(Model 2) showing a 78.7% reduction in time (83s
vs. 390.6s) compared to the exact join. Similarly, on
Walmart-Amazon (Model 1), the time decreased by
51.9% (27.1s vs. 56.4s). Despite these time savings,
F1-Scores remained largely unchanged, demonstrat-
ing that HNSW improves efficiency without compro-
mising matching quality.

Training times also differ between models, with
Model 2 taking longer due to its larger size and
higher dimensionality. While Model 2 generally pro-
vides higher F1-scores, Model 1 outperformed Model
2 on datasets like DBLP-ACM, DBLP-Scholar, and
Fodors-Zagats, suggesting a trade-off between em-
bedding quality and training time, particularly in
resource-constrained environments.

5.2 Runtime Evaluation

In this section, we evaluate the computational perfor-
mance of the proposed EM-Join solution by compar-
ing its execution time with that of Ditto.

5.2.1 Datasets

The datasets used were reduced versions of Big-
Citations and Song-Song from Das et al. (Das et al.,
2017). Big-Citations originally contained two ta-
bles and a gold standard with over half a million
pairs, while Song-Song had over one million pairs.
A three-step reduction technique was applied: first,
10% of the gold standard pairs were randomly sam-
pled; then, the necessary records from the original ta-
bles were identified and proportionally reduced; and
finally, the gold standard was updated to match the
reduced tables. The final datasets contained 10-21%
of the original table sizes. A combined dataset, in-
cluding negative pairs and the reduced gold standard,
was split into training, validation, and test sets using
scikit-learn, ensuring balanced partitions.

5.2.2 Experimental Setup

The experiments used EM-Join and Ditto. For EM-
Join, the all-mpnet-base-v2 model was employed with
the parameters defined in Section 5.1.2. Ditto used
the RoBERTa model with a batch size of 8, a max-
imum input length of 256 tokens, a learning rate of
2e-5, and 40 epochs for fine-tuning. Data augmenta-
tion, entry swapping, attribute deletion, model check-
pointing, and mixed precision (FP16) training were
applied. The experiments ran on a Supermicro AMD
compute node with 192 cores, 768 GB of RAM, 1

407

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

Table 4: Time spent in the EM-Join execution steps: fine-tuning (FT), generation of embeddings (ENC), performing the
similarity join with the exact index and for build and joining with the HNSW index. Model 1 is all-MiniLM-L12-v2 and

model 2 is all-mpnet-base-v2.

Join Build Join
Type Dataset Model g E(T)C Exact | HNSW | HNSW
(s) (s) (s)
A Gooal I 642 36 25 12 0.7
mazon-Lyoogle 2 996 10.0 49 24 12
I 37 52 6.7 2.6 23
BeerAdvo-RateBeer — 67 73 | 145 50 70
I 717 43 33 0.6 0.7
DBLP-ACM 2 1657 | 17.1 63 1.0 13
1 1576 | 605 | 854 | 63.0 25
Structured | DBLP-Scholar 2 3506 | 2017 | 172.1 | 128.0 i3
I 68 0.9 02 0.1 0.1
Fodors-Zagats 2 35 | 28 | 03 02 02
SN] 44 739 | 2117 | 401 42
unes-Amazon 2 119 | 28590 | 390.6 | 74.9 81
I 682 | 250 | 290 | 135 23
Walmart-Amazon 2 1427 | 869 | 564 | 239 32
1 644 31 12 03 0.4
Textual Abt-Buy 2 2286 | 95 21 05 0.8
u Comoan 1 7440 | 3165 | 393.8 | 5185 | 3767
pany 2 23220 | 14346 | 8272 | 6836 | 3714
1 781 49 53 0.6 0.7
DBLP-ACM 2 1814 | 176 | 65 12 14
1 1762 | 607 | 840 | 764 26
LR DERP-SciBlar p) 3451 | 2063 | 1715 | 1217 G4
Y ones Amazon 1 55 | 761 | 1989 | 453 53
2 123 | 2826 | 4272 | 869 9.7
] 571 247 | 347 | 150 2.0
Wlhartaemazen 2 1408 | 803 | 643 26.4 33

Table 5: Execution times (in seconds) for Ditto and EM-Join on the Big-Citations and Songs datasets. The table details
the total runtime for Ditto and the breakdown of EM-Join’s runtime into its main stages: fine-tuning, encoding, automatic

threshold calculation, and join operation.

Dataset Ditto EM-Join
Total | Fine-tuning | Encodding | Auto Threshold | Join | Total
Big Citations | 19649 5469 675 536 199 | 6879
Songs 49080 12755 549 676 107 | 14087

TB of storage, and three NVIDIA A100 GPUs with
80 GB of memory, using Conda to create an isolated
virtual environment.

5.2.3 Results

Table 5 shows the execution times for each stage of
EM-Join and the total execution time for both ap-
proaches. For EM-Join, the runtime is divided into
four stages: fine-tuning, encoding, automatic thresh-
old calculation, and join operation. On the Big-
Citations dataset, EM-Join achieved a total runtime of
6879 seconds, reducing the execution time by approx-
imately 2.8 times compared to Ditto, which required

408

19649 seconds. On the Songs dataset, EM-Join com-
pleted in 14087 seconds, achieving a reduction of over
3.4 times compared to Ditto’s 49080 seconds.

The results demonstrate the efficiency of EM-
Join, particularly in its modular structure, which al-
lows each stage to be optimized independently. Fine-
tuning was the most computationally intensive step,
accounting for the largest portion of the runtime. De-
spite this, EM-Join consistently achieved substantial
runtime reductions, showcasing its scalability and ef-
fectiveness for large-scale entity matching tasks, with
improvements of up to 3.4 times over Ditto while
maintaining similar levels of result quality.

EM-Join: Efficient Entity Matching Using Embedding-Based Similarity Join

6 CONCLUSION

This paper proposed a new EM technique that com-
bines text embeddings generated by pre-trained lan-
guage models with a similarity join mechanism. By
optimizing the matching process through heuristic
threshold selection, our method achieved competi-
tive accuracy, outperforming the accuracy of Ditto,
the state-of-the-art EM solution, in 3 of the 13
tested datasets, while significantly reducing execution
time —up to 3 times faster than Ditfo. These results
demonstrate the effectiveness of our approach in bal-
ancing performance and speed, making it suitable for
large-scale, real-time applications.

For future work, we plan to refine the threshold
selection process to further improve accuracy, partic-
ularly on textual and dirty datasets. We also intend to
explore the applicability of our method in other ap-
plication domains and larger datasets. Additionally,
integrating more advanced language models and opti-
mizing computational efficiency will be key areas of
focus to expand the versatility, robustness, and scala-
bility of our proposed solution.

ACKNOWLEDGEMENTS

This work was partially supported by CAPES/Brazil
and LaMCAD/UFG.

REFERENCES

Barlaug, N. and Gulla, J. A. (2021). Neural Networks for
Entity Matching: A Survey. ACM Transactions on
Knowledge Discovery from Data, 15(3):52:1-52:37.

Clark, K. and Manning, C. D. (2016). Improving Corefer-
ence Resolution by Learning Entity-Level Distributed
Representations. In Proceedings of the Association for
Computational Linguistics, pages 643—653.

Das, S., G.C,, P. S,, Doan, A., Naughton, J. F., Krishnan,
G., Deep, R., Arcaute, E., Raghavendra, V., and Park,
Y. (2017). Falcon: Scaling up hands-off crowdsourced
entity matching to build cloud services. SIGMOD 17,
page 1431-1446, New York, NY, USA. ACM.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2019).
BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding. In Proceedings of
the ACL, pages 4171-4186.

Elmagarmid, A. K., Ipeirotis, P. G., and Verykios, V. S.
(2007). Duplicate Record Detection: A Survey. IEEE
Transactions on Knowledge and Data Engineering,
19(1):1-16.

Johnson, J., Douze, M., and Jégou, H. (2019). Billion-scale
similarity search with gpus. IEEE Transactions on Big
Data, 7(3):535-547.

Leone, M., Huber, S., Arora, A., Garcia-Duran, A., and
West, R. (2022). A Critical Re-evaluation of Neural
Methods for Entity Alignment. Proceedings of the
VLDB Endowment, 15(8):1712—1725.

Li, Y, Li, J., Suhara, Y., Doan, A., and Tan, W.-C. (2023).
Effective entity matching with transformers. The
VLDB Journal, 32(6):1215-1235.

Lima, P. H. S., Santana, D. R., Martins, W. S., and Ribeiro,
L. A. (2023). Evaluation of Deep Learning Tech-
niques for Entity Matching. In International Confer-
ence on Enterprise Information Systems, pages 247—
254.

Malkov, Y. A. and Yashunin, D. A. (2020). Efficient and
Robust Approximate Nearest Neighbor Search Using
Hierarchical Navigable Small World Graphs. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 42(4):824-836.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Ef-
ficient Estimation of Word Representations in Vector
Space. In Bengio, Y. and LeCun, Y., editors, Interna-
tional Conference on Learning Representations.

Mudgal, S., Li, H., Rekatsinas, T., Doan, A., Park, Y., Kr-
ishnan, G., Deep, R., Arcaute, E., and Raghavendra,
V. (2018). Deep Learning for Entity Matching: A De-
sign Space Exploration. In Proceedings of the SIG-
MOD Conference, pages 19-34. ACM.

Muennighoff, N., Tazi, N., Magne, L., and Reimers, N.
(2023). MTEB: Massive Text Embedding Bench-
mark. In Proceedings of the ACL, pages 2014-2037,
Dubrovnik, Croatia. ACL.

Newcombe, H., Kennedy, J., Axford, S., and James, A.
(1959). Automatic Linkage of Vital Records. Science,
130(3381):954-959.

Reimers, N. and Gurevych, I. (2019). Sentence-BERT: Sen-
tence Embeddings using Siamese BERT-Networks.
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 3982-3992.

Santana, D. R. and Ribeiro, L. A. (2023). Approx-
imate Similarity Joins over Dense Vector Embed-
dings. In Proceedings of the Brazilian Symposium on
Databases, pages 51-62. SBC.

Shen, W., Wang, J., and Han, J. (2015). Entity Linking
with a Knowledge Base: Issues, Techniques, and So-
lutions. IEEE Transactions on Knowledge and Data
Engineering, 27(2):443—460.

Suri, R., Fischer, J., Madden, S., and Stonebraker, M.
(2022). Ember: No-code context enrichment via
similarity-based keyless joins. Proceedings of the
VLDB Endowment, 15:699-712.

Thirumuruganathan, S., Li, H., Tang, N., Ouzzani, M.,
Govind, Y., Paulsen, D., Fung, G., and Doan, A.
(2021). Deep Learning for Blocking in Entity Match-
ing: A Design Space Exploration. Proceedings of the
VLDB Endowment, 14(11):2459-2472.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention is All you Need. In Proceedings
of the Conference on Neural Information Processing
Systems, pages 5998—-6008.

409

