loading
Papers

Research.Publish.Connect.

Paper

Authors: Rui Yan 1 ; Fan Li 2 ; Xiaoyu Wang 3 ; Tapani Ristaniemi 4 and Fengyu Cong 1

Affiliations: 1 Faculty of Information Technology, University of Jyväskylä, 40014, Jyväskylä, Finland, School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, 116024, Dalian and China ; 2 School of Information Science and Engineering, Dalian Polytechnic University, 116034, Dalian and China ; 3 School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, 116024, Dalian and China ; 4 Faculty of Information Technology, University of Jyväskylä, 40014, Jyväskylä and Finland

ISBN: 978-989-758-378-0

Keyword(s): Polysomnography, Multi-modality Analysis, MATLAB Toolbox, Automatic Sleep Scoring.

Related Ontology Subjects/Areas/Topics: Biomedical Applications ; Design and Implementation of Signal Processing Systems ; Multimedia ; Multimedia Signal Processing ; Multimedia Systems and Applications ; Multimodal Signal Processing ; Telecommunications

Abstract: Sleep scoring is a fundamental but time-consuming process in any sleep laboratory. To speed up the process of sleep scoring without compromising accuracy, this paper develops an automatic sleep scoring toolbox with the capability of multi-signal processing. It allows the user to choose signal types and the number of target classes. Then, an automatic process containing signal pre-processing, feature extraction, classifier training (or prediction) and result correction will be performed. Finally, the application interface displays predicted sleep structure, related sleep parameters and the sleep quality index for reference. To improve the identification accuracy of minority stages, a layer-wise classification strategy is proposed according to the signal characteristics of sleep stages. The context of the current stage is taken into consideration in the correction phase by employing a Hidden Markov Model to study the transition rules of sleep stages in the training dataset. These transi tion rules will be used for logic classification results. The performance of proposed toolbox has been tested on 100 subjects with an average accuracy of 85.76%. The proposed automatic scoring toolbox would alleviate the burden of the physicians, speed up sleep scoring, and expedite sleep research. (More)

PDF ImageFull Text

Download
CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 35.175.201.14

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Yan, R.; Li, F.; Wang, X.; Ristaniemi, T. and Cong, F. (2019). An Automatic Sleep Scoring Toolbox: Multi-modality of Polysomnography Signals’ Processing.In Proceedings of the 16th International Joint Conference on e-Business and Telecommunications - Volume 1: SIGMAP, ISBN 978-989-758-378-0, pages 301-309. DOI: 10.5220/0007925503010309

@conference{sigmap19,
author={Rui Yan. and Fan Li. and Xiaoyu Wang. and Tapani Ristaniemi. and Fengyu Cong.},
title={An Automatic Sleep Scoring Toolbox: Multi-modality of Polysomnography Signals’ Processing},
booktitle={Proceedings of the 16th International Joint Conference on e-Business and Telecommunications - Volume 1: SIGMAP,},
year={2019},
pages={301-309},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0007925503010309},
isbn={978-989-758-378-0},
}

TY - CONF

JO - Proceedings of the 16th International Joint Conference on e-Business and Telecommunications - Volume 1: SIGMAP,
TI - An Automatic Sleep Scoring Toolbox: Multi-modality of Polysomnography Signals’ Processing
SN - 978-989-758-378-0
AU - Yan, R.
AU - Li, F.
AU - Wang, X.
AU - Ristaniemi, T.
AU - Cong, F.
PY - 2019
SP - 301
EP - 309
DO - 10.5220/0007925503010309

Login or register to post comments.

Comments on this Paper: Be the first to review this paper.