loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Mridula Vijendran ; Frederick Li and Hubert P. H. Shum

Affiliation: Department of Computer Science, Durham University, Durham, U.K.

Keyword(s): Data Bias, Style Transfer, Image Classification, Deep Learning, Paintings.

Abstract: It is difficult to train classifiers on paintings collections due to model bias from domain gaps and data bias from the uneven distribution of artistic styles. Previous techniques like data distillation, traditional data augmentation and style transfer improve classifier training using task specific training datasets or domain adaptation. We propose a system to handle data bias in small paintings datasets like the Kaokore dataset while simultaneously accounting for domain adaptation in fine-tuning a model trained on real world images. Our system consists of two stages which are style transfer and classification. In the style transfer stage, we generate the stylized training samples per class with uniformly sampled content and style images and train the style transformation network per domain. In the classification stage, we can interpret the effectiveness of the style and content layers at the attention layers when training on the original training dataset and the stylized images. We can tradeoff the model performance and convergence by dynamically varying the proportion of augmented samples in the majority and minority classes. We achieve comparable results to the SOTA with fewer training epochs and a classifier with fewer training parameters. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.145.81.252

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Vijendran, M.; Li, F. and Shum, H. (2023). Tackling Data Bias in Painting Classification with Style Transfer. In Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 5: VISAPP; ISBN 978-989-758-634-7; ISSN 2184-4321, SciTePress, pages 250-261. DOI: 10.5220/0011776600003417

@conference{visapp23,
author={Mridula Vijendran. and Frederick Li. and Hubert P. H. Shum.},
title={Tackling Data Bias in Painting Classification with Style Transfer},
booktitle={Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 5: VISAPP},
year={2023},
pages={250-261},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0011776600003417},
isbn={978-989-758-634-7},
issn={2184-4321},
}

TY - CONF

JO - Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 5: VISAPP
TI - Tackling Data Bias in Painting Classification with Style Transfer
SN - 978-989-758-634-7
IS - 2184-4321
AU - Vijendran, M.
AU - Li, F.
AU - Shum, H.
PY - 2023
SP - 250
EP - 261
DO - 10.5220/0011776600003417
PB - SciTePress