Authors:
Khalid M. Salama
and
Fernando E. B. Otero
Affiliation:
University of Kent, United Kingdom
Keyword(s):
Ant Colony Optimization (ACO), Data Mining, Classification, Decision Trees, Multi-trees.
Related
Ontology
Subjects/Areas/Topics:
Artificial Intelligence
;
Computational Intelligence
;
Evolutionary Computing
;
Knowledge Discovery and Information Retrieval
;
Knowledge-Based Systems
;
Machine Learning
;
Soft Computing
;
Swarm/Collective Intelligence
;
Symbolic Systems
Abstract:
Ant Colony Optimization (ACO) is a meta-heuristic for solving combinatorial optimization problems, inspired by the behaviour of biological ant colonies. One of the successful applications of ACO is learning classification models (classifiers). A classifier encodes the relationships between the input attribute values and the values of a class attribute in a given set of labelled cases and it can be used to predict the class value of new unlabelled cases. Decision trees have been widely used as a type of classification model that represent comprehensible knowledge to the user. In this paper, we propose the use of ACO-based algorithms for learning an extended multi-tree classification model, which consists of multiple decision trees, one for each class value. Each class-based decision trees is responsible for discriminating between its class value and all other values available in the class domain. Our proposed algorithms are empirically evaluated against well-known decision trees induc
tion algorithms, as well as the ACO-based Ant-Tree-Miner algorithm. The results show an overall improvement in predictive accuracy over 32 benchmark datasets. We also discuss how the new multi-tree models can provide the user with more understanding and knowledge-interpretability in a given domain.
(More)