Authors:
Kiran Yedugundla
;
Per Hurtig
and
Anna Brunstrom
Affiliation:
Dept. of Computer Science, Karlstad University, Karlstad and Sweden
Keyword(s):
Multipath TCP, Cloud Applications, Latency, Loss Recovery, Performance Evaluation, Measurements.
Related
Ontology
Subjects/Areas/Topics:
Cloud Computing
;
Engineering Mobile Clouds and Mobile-based Systems
;
Mobile Cloud Computing and Services
Abstract:
Internet traffic is comprised of data flows from various applications with unique traffic characteristics. For many cloud applications, end-to-end latency is a primary factor affecting the perceived user experience. As packet losses cause delays in the communication they impact user experience, making efficient handling of packet losses an important function of transport layer protocols. Multipath TCP (MPTCP) is a modification to TCP that enables simultaneous use of several paths for a TCP flow. MPTCP is known to improve throughput. However, the performance of MPTCP is not optimal when handling certain loss scenarios. Efficient packet loss recovery is thus important to achieve desirable flow completion times for interactive cloud-based applications. In this paper we evaluate the performance of MPTCP in handling tail losses using traffic traces from various cloud-based applications. Tail losses, losses that occur at the end of a flow or traffic burst, are particularly challenging from
a latency perspective as they are difficult to detect and recover in a timely manner. Tail losses in TCP are handled by using a tail loss probe (TLP) mechanism which was adapted to MPTCP from TCP. We investigate the performance of TLP in MPTCP, comparing the standard implementation to a recently proposed, less conservative approach. Our experimental results show that a less conservative implementation of TLP performs significantly better than the standard implementation in handling tail losses, reducing the average burst completion time of cloud based applications when tail loss occurs by up to 50% in certain cases.
(More)