loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Paper Unlock

Authors: Jisoo Jeong ; Seungeui Lee and Nojun Kwak

Affiliation: Seoul National University, Seoul, South Korea

Keyword(s): Semi-supervised Learning.

Abstract: Semi-supervised learning (SSL) is a study that efficiently exploits a large amount of unlabeled data to improve performance in conditions of limited labeled data. Most of the conventional SSL methods assume that the classes of unlabeled data are included in the set of classes of labeled data. In addition, these methods do not sort out useless unlabeled samples and use all the unlabeled data for learning, which is not suitable for realistic situations. In this paper, we propose an SSL method called selective self-training (SST), which selectively decides whether to include each unlabeled sample in the training process. It is designed to be applied to a more real situation where classes of unlabeled data are different from the ones of the labeled data. For the conventional SSL problems which deal with data where both the labeled and unlabeled samples share the same class categories, the proposed method not only performs comparable to other conventional SSL algorithms but also can be co mbined with other SSL algorithms. While the conventional methods cannot be applied to the new SSL problems, our method does not show any performance degradation even if the classes of unlabeled data are different from those of the labeled data. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.15.141.155

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Jeong, J.; Lee, S. and Kwak, N. (2020). Self-Training using Selection Network for Semi-supervised Learning. In Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods - ICPRAM; ISBN 978-989-758-397-1; ISSN 2184-4313, SciTePress, pages 23-32. DOI: 10.5220/0008940900230032

@conference{icpram20,
author={Jisoo Jeong. and Seungeui Lee. and Nojun Kwak.},
title={Self-Training using Selection Network for Semi-supervised Learning},
booktitle={Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods - ICPRAM},
year={2020},
pages={23-32},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0008940900230032},
isbn={978-989-758-397-1},
issn={2184-4313},
}

TY - CONF

JO - Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods - ICPRAM
TI - Self-Training using Selection Network for Semi-supervised Learning
SN - 978-989-758-397-1
IS - 2184-4313
AU - Jeong, J.
AU - Lee, S.
AU - Kwak, N.
PY - 2020
SP - 23
EP - 32
DO - 10.5220/0008940900230032
PB - SciTePress