loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Rima Touahria 1 ; Abdenour Hacine-Gharbi 1 ; Philippe Ravier 2 and Messaoud Mostefai 1

Affiliations: 1 LMSE Laboratory, University of Bordj Bou Arréridj, Elanasser, 34030 Bordj Bou Arréridj, Algeria ; 2 PRISME Laboratory, University of Orleans, 12 rue de Blois, 45067 Orleans, France

Keyword(s): Heart Sound, Multidomain Features, Feature Extraction, Feature Selection, Mutual Information, Classification.

Abstract: Many classification systems of the heart sound signals use a combination of features from different domains. In a former reference paper, 324 multidomain features were used for classifying segmented phonocardiogram signals. However, the large feature dimension requires high memory space, high calculus and probably reduces the classification accuracy caused by the curse of dimensionality. In the present work, we propose to reduce the dimensionality of features vectors by selecting the relevant features using six heuristic strategies of feature selection based on mutual information maximisation criterion. In order to validate the selected subset of features, a k-NN model based-classifier was used and evaluated on the PhysioNet/Computing in Cardiology Challenge2016 dataset using the same features sets described in the reference paper. The results demonstrate that the Joint Mutual Information (JMI) selection strategy increases the classification rate from 85. 57% to 89.28% and simultaneo usly reduces dimension from 324 to 46. Furthermore, this work demonstrates that systolic segment features are the most relevant for murmur/normal classification. It also demonstrates the capability of feature selection algorithms to emphasize specific key areas in signals, which is helpful for aided diagnostic systems and fundamental research. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.142.198.51

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Touahria, R.; Hacine-Gharbi, A.; Ravier, P. and Mostefai, M. (2024). Relevant Multi Domain Features Selection Based on Mutual Information for Heart Sound Classification. In Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods - ICPRAM; ISBN 978-989-758-684-2; ISSN 2184-4313, SciTePress, pages 918-923. DOI: 10.5220/0012565300003654

@conference{icpram24,
author={Rima Touahria. and Abdenour Hacine{-}Gharbi. and Philippe Ravier. and Messaoud Mostefai.},
title={Relevant Multi Domain Features Selection Based on Mutual Information for Heart Sound Classification},
booktitle={Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods - ICPRAM},
year={2024},
pages={918-923},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0012565300003654},
isbn={978-989-758-684-2},
issn={2184-4313},
}

TY - CONF

JO - Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods - ICPRAM
TI - Relevant Multi Domain Features Selection Based on Mutual Information for Heart Sound Classification
SN - 978-989-758-684-2
IS - 2184-4313
AU - Touahria, R.
AU - Hacine-Gharbi, A.
AU - Ravier, P.
AU - Mostefai, M.
PY - 2024
SP - 918
EP - 923
DO - 10.5220/0012565300003654
PB - SciTePress