Authors:
Virgílio F. Bento
1
;
Filipe M. Silva
2
and
João P. Silva Cunha
2
Affiliations:
1
IEETA - Institute of Electronic Engineering and Telematics of Aveiro, University of Aveiro, Portugal
;
2
University of Aveiro, Portugal
Keyword(s):
Brain-machine interfaces, Electroencephalography (EEG), Mu rhythms, Motor imagery.
Related
Ontology
Subjects/Areas/Topics:
Applications and Services
;
Artificial Intelligence
;
Biomedical Engineering
;
Biomedical Signal Processing
;
Computational Intelligence
;
Computer Vision, Visualization and Computer Graphics
;
Data Manipulation
;
Health Engineering and Technology Applications
;
Human-Computer Interaction
;
Medical Image Detection, Acquisition, Analysis and Processing
;
Methodologies and Methods
;
Neurocomputing
;
Neurotechnology, Electronics and Informatics
;
Pattern Recognition
;
Physiological Computing Systems
;
Sensor Networks
;
Soft Computing
Abstract:
Recent advances in computer hardware and signal processing assert that controlling certain functions by thoughts may represent a landmark in the way we interact with many output devices. This paper exploits the possibility of achieving a communication channel between the brain and a mobile robot through the modulation of the electroencephalogram (EEG) signal during motor imagery tasks. A major concern was directed towards designing a generalized and multi-purpose framework that supports rapid prototyping of various experimental strategies and operating modes. Preliminary results of brain-state estimation using EEG signals recorded during a self-paced left/right hand movement task are also presented. The user successfully learned to operate the system and how to better perform the motor-related tasks based on outcomes produced by its mental focus.