loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Paper Unlock

Authors: Peter Mondrup Rasmussen 1 ; Morten Mørup 1 ; Lars Kai Hansen 1 and Sidse M. Arnfred 2

Affiliations: 1 Informatics and Mathematical Modelling, Technical University of Denmark, Denmark ; 2 University Hospital of Copenhagen, Denmark

Keyword(s): EEG, Event related potentials, Independent component analysis (ICA), Molgedey Schuster, TDSEP, Model selection, Cross validation.

Related Ontology Subjects/Areas/Topics: Applications and Services ; Biomedical Engineering ; Biomedical Signal Processing ; Computer Vision, Visualization and Computer Graphics ; Medical Image Detection, Acquisition, Analysis and Processing

Abstract: In analysis of multi-channel event related EEG signals indepedent component analysis (ICA) has become a widely used tool to attempt to separate the data into neural activity, physiological and non-physiological artifacts. High density elctrode systems offer an opportunity to estimate a corresponding large number of independent components (ICs). However, too large a number of ICs leads to overfitting of the ICA model, which can have a major impact on the model validity. Consequently, finding the optimal number of components in the ICA model is an important problem. In this paper we present a method for model order selection, based on a probabilistic framework. The proposed method is a modification of the Molgedey Schuster (MS) algorithm to epoched, i.e. event related data. Thus, the contribution of the present paper can be summarized as follows: 1) We advocate MS as a low complexity ICA alternative for EEG. 2) We define an epoch based likelihood function for estimation of a principled unbiased ’test error’. 3) Based on the unbiased test error measure we perform model order selection for ICA of EEG. Applied to a 64 channel EEG data set we were able to determine an optimum order of the ICA model and to extract 22 ICs related to the neurophysiological stimulus responses as well as ICs related to physiological- and non-physiological noise. Furthermore, highly relevant high frequency response information was captured by the ICA model. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.135.184.136

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Mondrup Rasmussen, P.; Mørup, M.; Kai Hansen, L. and M. Arnfred, S. (2008). MODEL ORDER ESTIMATION FOR INDEPENDENT COMPONENT ANALYSIS OF EPOCHED EEG SIGNALS. In Proceedings of the First International Conference on Bio-inspired Systems and Signal Processing (BIOSTEC 2008) - Volume 2: BIOSIGNALS; ISBN 978-989-8111-18-0; ISSN 2184-4305, SciTePress, pages 3-10. DOI: 10.5220/0001059500030010

@conference{biosignals08,
author={Peter {Mondrup Rasmussen}. and Morten Mørup. and Lars {Kai Hansen}. and Sidse {M. Arnfred}.},
title={MODEL ORDER ESTIMATION FOR INDEPENDENT COMPONENT ANALYSIS OF EPOCHED EEG SIGNALS},
booktitle={Proceedings of the First International Conference on Bio-inspired Systems and Signal Processing (BIOSTEC 2008) - Volume 2: BIOSIGNALS},
year={2008},
pages={3-10},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001059500030010},
isbn={978-989-8111-18-0},
issn={2184-4305},
}

TY - CONF

JO - Proceedings of the First International Conference on Bio-inspired Systems and Signal Processing (BIOSTEC 2008) - Volume 2: BIOSIGNALS
TI - MODEL ORDER ESTIMATION FOR INDEPENDENT COMPONENT ANALYSIS OF EPOCHED EEG SIGNALS
SN - 978-989-8111-18-0
IS - 2184-4305
AU - Mondrup Rasmussen, P.
AU - Mørup, M.
AU - Kai Hansen, L.
AU - M. Arnfred, S.
PY - 2008
SP - 3
EP - 10
DO - 10.5220/0001059500030010
PB - SciTePress