Authors:
Paolo Spagnolo
;
Marco Leo
;
Tiziana D’Orazio
;
Andrea Caroppo
and
Tommaso Martiriggiano
Affiliation:
National Research Council, Italy
Keyword(s):
Motion detection, Background subtraction, Background modeling.
Related
Ontology
Subjects/Areas/Topics:
Image Processing
;
Informatics in Control, Automation and Robotics
;
Robotics and Automation
;
Surveillance
;
Vision, Recognition and Reconstruction
Abstract:
Detecting moving objects is very important in many application contexts such as people detection, visual
surveillance, automatic generation of video effects, and so on. The first and fundamental step of all motion detection algorithms is the background modeling. The goal of the methodology here proposed is to create a background model substantially independent from each hypothesis about the training phase, as the presence of moving persons, moving background objects, and changing (sudden or gradual) light conditions. We propose an unsupervised approach that combines the results of temporal analysis of pixel intensity with a sliding window procedure to preserve the model from the presence of foreground moving objects during the building phase. Moreover, a multilayered approach has been implemented to handle small movements in background objects. The algorithm has been tested in many different contexts, such as a soccer stadium, a parking area, a street, a beach. Finally, it has been t
ested even on the CAVIAR 2005 dataset.
(More)