loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Rafael Marin Machado de Souza 1 ; 2 ; 3 ; Leandro Nunes de Castro 1 ; 4 ; 3 ; Marcio Biczyk 1 ; Marcos dos Santos 2 ; 5 and Eder Cassettari 2

Affiliations: 1 Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), InLab, Rua Doutor Ovídio Pires de Campos 75 (Portaria 1), São Paulo, SP, Brazil ; 2 Universidade de São Paulo (USP), Campus Piracicaba – Luiz de Queiroz, Rua Alexandre Herculano, 143 – Monteiro, Piracicaba, SP, Brazil ; 3 Universidade Estadual de Campinas (UNICAMP), Faculdade de Tecnologia, R. Paschoal Marmo, 1888 - Jd. Nova Itália, Limeira, SP, Brazil ; 4 Florida Gulf Coast University (FGCU), 10501 Fgcu Blvd S, Fort Myers, FL 33965, U.S.A. ; 5 Ministério da Defesa - Comando da Marinha, Centro de Análises de Sistemas Navais – CASNAV, Praça Barão de Ladário S/N° - Ed. 23, Centro, Rio de Janeiro, RJ, Brazil

Keyword(s): Software Agent, Simulation, Monte Carlo, Inventory Theory.

Abstract: The acquisition of innovative items or those without historical demand data considerably increases the complexity of the routine of buyers, who among the daily challenges are keeping stocks up to date, with quantities that provide maximum profitability or maximum use of the purchased items. Seeking to provide a tool to assist in these goals, this study implements a Python-based software agent employing the Monte Carlo method for stochastic simulation and proposes a solution for uncertain inventory demands, providing a decision-mak-ing tool in the absence of historical data, thereby optimizing inventory levels and maximizing profitability. Experiments conducted across both local and cloud server configurations, with a comparative analysis of CPU and GPU performance, demonstrates the agent’s capacity to generate random scenarios with a statistical tolerance margin of 1% from 10,000 simulations. Scalability tests underscore the agent’s adaptability to diverse scenarios, effectively harn essing GPU capabilities for processing extensive data. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.143.7.101

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Marin Machado de Souza, R., Nunes de Castro, L., Biczyk, M., dos Santos, M. and Cassettari, E. (2024). Stochastic Simulation Agent for Unknown Inventory Demands in Healthcare Supply Management. In Proceedings of the 13th International Conference on Data Science, Technology and Applications - DATA; ISBN 978-989-758-707-8; ISSN 2184-285X, SciTePress, pages 211-217. DOI: 10.5220/0012674700003756

@conference{data24,
author={Rafael {Marin Machado de Souza} and Leandro {Nunes de Castro} and Marcio Biczyk and Marcos {dos Santos} and Eder Cassettari},
title={Stochastic Simulation Agent for Unknown Inventory Demands in Healthcare Supply Management},
booktitle={Proceedings of the 13th International Conference on Data Science, Technology and Applications - DATA},
year={2024},
pages={211-217},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0012674700003756},
isbn={978-989-758-707-8},
issn={2184-285X},
}

TY - CONF

JO - Proceedings of the 13th International Conference on Data Science, Technology and Applications - DATA
TI - Stochastic Simulation Agent for Unknown Inventory Demands in Healthcare Supply Management
SN - 978-989-758-707-8
IS - 2184-285X
AU - Marin Machado de Souza, R.
AU - Nunes de Castro, L.
AU - Biczyk, M.
AU - dos Santos, M.
AU - Cassettari, E.
PY - 2024
SP - 211
EP - 217
DO - 10.5220/0012674700003756
PB - SciTePress