loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Antoni Burguera 1 ; 2

Affiliations: 1 Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, 07122 Palma, Spain ; 2 Institut d’Investigació Sanitària Illes Balears (IdISBa), 07010 Palma, Spain

Keyword(s): Underwater Robotics, Neural Network, Visual SLAM.

Abstract: This paper proposes a fast method to robustly perform Visual Graph SLAM in underwater environments. Since Graph SLAM is not resilient to wrong loop detections, the key of our proposal is the Visual Loop Detector, which operates in two steps. First, a lightweight Siamese Neural Network performs a fast check to discard non loop closing image pairs. Second, a RANSAC based algorithm exhaustively analyzes the remaining image pairs and filters out those that do not close a loop. The accepted image pairs are then introduced as new graph constraints that will be used during the graph optimization. By executing RANSAC only on a previously filtered set of images, the gain in speed is considerable. The experimental results, which evaluate each component separately as well as the whole Visual Graph SLAM system, show the validity of our proposal both in terms of quality of the detected loops, error of the resulting trajectory and execution time.

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 18.223.195.127

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Burguera, A. (2022). Robust Underwater Visual Graph SLAM using a Simanese Neural Network and Robust Image Matching. In Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) - Volume 4: VISAPP; ISBN 978-989-758-555-5; ISSN 2184-4321, SciTePress, pages 591-598. DOI: 10.5220/0010889100003124

@conference{visapp22,
author={Antoni Burguera.},
title={Robust Underwater Visual Graph SLAM using a Simanese Neural Network and Robust Image Matching},
booktitle={Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) - Volume 4: VISAPP},
year={2022},
pages={591-598},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0010889100003124},
isbn={978-989-758-555-5},
issn={2184-4321},
}

TY - CONF

JO - Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) - Volume 4: VISAPP
TI - Robust Underwater Visual Graph SLAM using a Simanese Neural Network and Robust Image Matching
SN - 978-989-758-555-5
IS - 2184-4321
AU - Burguera, A.
PY - 2022
SP - 591
EP - 598
DO - 10.5220/0010889100003124
PB - SciTePress