Authors:
Reiji Saito
and
Kazuhiro Hotta
Affiliation:
Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
Keyword(s):
Domain Generalization, Segmentation, DeepCCA, SQ-VAE.
Abstract:
Domain generalization is a technique aimed at enabling models to maintain high accuracy when applied to new environments or datasets (unseen domains) that differ from the datasets used in training. Generally, the accuracy of models trained on a specific dataset (source domain) often decreases significantly when evaluated on different datasets (target domain). This issue arises due to differences in domains caused by varying environmental conditions such as imaging equipment and staining methods. Therefore, we undertook two initiatives to perform segmentation that does not depend on domain differences. We propose a method that separates category information independent of domain differences from the information specific to the source domain. By using information independent of domain differences, our method enables learning the segmentation targets (e.g., blood vessels and cell nuclei). Although we extract independent information of domain differences, this cannot completely bridge th
e domain gap between training and test data. Therefore, we absorb the domain gap using the quantum vectors in Stochastically Quantized Variational AutoEncoder (SQ-VAE). In experiments, we evaluated our method on datasets for vascular segmentation and cell nucleus segmentation. Our methods improved the accuracy compared to conventional methods.
(More)