loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Franz Thaler 1 ; 2 ; Matthias Gsell 1 ; Gernot Plank 1 and Martin Urschler 3

Affiliations: 1 Gottfried Schatz Research Center: Medical Physics and Biophysics, Medical University of Graz, Graz, Austria ; 2 Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria ; 3 Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria

Keyword(s): Machine Learning, Image Segmentation, Myocardial Infarction.

Abstract: Late gadolinium enhanced (LGE) magnetic resonance (MR) imaging is widely established to assess the viability of myocardial tissue of patients after acute myocardial infarction (MI). We propose the Cascading Refinement CNN (CaRe-CNN), which is a fully 3D, end-to-end trained, 3-stage CNN cascade that exploits the hierarchical structure of such labeled cardiac data. Throughout the three stages of the cascade, the label definition changes and CaRe-CNN learns to gradually refine its intermediate predictions accordingly. Furthermore, to obtain more consistent qualitative predictions, we propose a series of post-processing steps that take anatomical constraints into account. Our CaRe-CNN was submitted to the FIMH 2023 MYOSAIQ challenge, where it ranked second out of 18 participating teams. CaRe-CNN showed great improvements most notably when segmenting the difficult but clinically most relevant myocardial infarct tissue (MIT) as well as microvascular obstructions (MVO). When computing the a verage scores over all labels, our method obtained the best score in eight out of ten metrics. Thus, accurate cardiac segmentation after acute MI via our CaRe-CNN allows generating patient-specific models of the heart serving as an important step towards personalized medicine. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.15.239.0

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Thaler, F.; Gsell, M.; Plank, G. and Urschler, M. (2024). CaRe-CNN: Cascading Refinement CNN for Myocardial Infarct Segmentation with Microvascular Obstructions. In Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP; ISBN 978-989-758-679-8; ISSN 2184-4321, SciTePress, pages 53-64. DOI: 10.5220/0012324800003660

@conference{visapp24,
author={Franz Thaler. and Matthias Gsell. and Gernot Plank. and Martin Urschler.},
title={CaRe-CNN: Cascading Refinement CNN for Myocardial Infarct Segmentation with Microvascular Obstructions},
booktitle={Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP},
year={2024},
pages={53-64},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0012324800003660},
isbn={978-989-758-679-8},
issn={2184-4321},
}

TY - CONF

JO - Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP
TI - CaRe-CNN: Cascading Refinement CNN for Myocardial Infarct Segmentation with Microvascular Obstructions
SN - 978-989-758-679-8
IS - 2184-4321
AU - Thaler, F.
AU - Gsell, M.
AU - Plank, G.
AU - Urschler, M.
PY - 2024
SP - 53
EP - 64
DO - 10.5220/0012324800003660
PB - SciTePress