Authors:
Hazem Wannous
1
;
Yves Lucas
2
and
Sylvie Treuillet
2
Affiliations:
1
University of Bordeaux, France
;
2
University of Orleans, France
Keyword(s):
Tissue classification, 3D modeling, Machine learning, Wound assessment.
Related
Ontology
Subjects/Areas/Topics:
Artificial Intelligence
;
Biomedical Engineering
;
Biomedical Signal Processing
;
Computer Vision, Visualization and Computer Graphics
;
Data Manipulation
;
Feature Extraction
;
Features Extraction
;
Health Engineering and Technology Applications
;
Human-Computer Interaction
;
Image and Video Analysis
;
Image Formation and Preprocessing
;
Informatics in Control, Automation and Robotics
;
Methodologies and Methods
;
Multi-View Geometry
;
Neurocomputing
;
Neurotechnology, Electronics and Informatics
;
Pattern Recognition
;
Physiological Computing Systems
;
Sensor Networks
;
Signal Processing, Sensors, Systems Modeling and Control
;
Soft Computing
;
Surface Geometry and Shape
Abstract:
From colour images acquired with a hand held digital camera, an innovative tool for assessing chronic wounds has been developed. It combines both types of assessment, colour analysis and dimensional measurement of injured tissues in a user-friendly system. Colour and texture descriptors have been extracted and selected from a sample database of wound tissues, before the learning stage of a support vector machine classifier with perceptron kernel on four categories of tissues. Relying on a triangulated 3D model captured using uncalibrated vision techniques applied on a stereoscopic image pair, a fusion algorithm elaborates new tissue labels on each model triangle from each view. The results of 2D classification are merged and directly mapped on the mesh surface of the 3D wound model. The result is a significative improvement in the robustness of the classification. Real tissue areas can be computed by retro projection of identified regions on the 3D model.