Authors:
José M. Ferrández
1
;
Victor Lorente
1
;
Javier Garrigós
1
and
Eduardo Fernández
2
Affiliations:
1
Universidad Politécnica de Cartagena, Spain
;
2
Universidad Miguel Hernández de Elche, Spain
Keyword(s):
Cultured neural network, Induced plasticity, Multielectrode recordings, Robotic control.
Related
Ontology
Subjects/Areas/Topics:
Artificial Intelligence
;
Biomedical Engineering
;
Biomedical Signal Processing
;
Computational Intelligence
;
Health Engineering and Technology Applications
;
Human-Computer Interaction
;
Methodologies and Methods
;
Neural Network Hardware Implementation and Applications
;
Neural Networks
;
Neurocomputing
;
Neuroinformatics and Bioinformatics
;
Neurotechnology, Electronics and Informatics
;
Pattern Recognition
;
Physiological Computing Systems
;
Sensor Networks
;
Signal Processing
;
Soft Computing
;
Theory and Methods
Abstract:
The main objective of this work is to analyze the computing capabilities of human neuroblastoma cultured cells and to define stimulation patterns able to modulate the neural activity in response to external stimuli for controlling an autonomous robot. Multielectrode Arrays Setups have been designed for direct culturing neural cells over silicon or glass substrates, providing the capability to stimulate and record simultaneously populations of neural cells. This paper tries to modulate the natural physiologic responses of human neural cells by tetanic stimulation of the culture. If we are able to modify the selective responses of some cells with a external pattern stimuli over different time scales, the neuroblastoma-cultured structure could be trained to process pre-programmed spatio-temporal patterns. We show that the large neuroblastoma networks developed in cultured MEAs are capable of learning: stablishing numerous and dynamic connections, with modifiability induced by external
stimuli.
(More)