Authors:
Radovan Fusek
1
;
Eduard Sojka
1
;
Karel Mozdřeň
1
and
Milan Šurkala
2
Affiliations:
1
Technical University of Ostrava, Czech Republic
;
2
echnical University of Ostrava, Czech Republic
Keyword(s):
Object Detection, Image Features, Recognition.
Related
Ontology
Subjects/Areas/Topics:
Computer Vision, Visualization and Computer Graphics
;
Features Extraction
;
Image and Video Analysis
;
Shape Representation and Matching
Abstract:
In this paper, we propose a novel technique for object description. The proposed method is based on investigation of energy distribution (in the image) that describes the properties of objects. The energy distribution is encoded into a vector of features and the vector is then used as an input for the SVM classifier. Generally, the technique can be used for detecting arbitrary objects. In this paper, however, we demonstrate the robustness of the proposed descriptors for solving the problem of car detection. Compared with the state-of-the-art descriptors (e.g. HOG, Haar-like features), the proposed approach achieved better results, especially from the viewpoint of dimensionality of the feature vector; the proposed approach is able to successfully describe the objects of interest with a relatively small set of numbers without the use of methods for the reduction of feature vector.