loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Paper Unlock

Authors: M. Domínguez 1 ; J. Aroba 2 ; J. G. Enríquez 1 ; I. Ramos 1 ; J. M. Lucena-Soto 3 and M. J. Escalona 1

Affiliations: 1 University of Seville, Spain ; 2 University of Huelva, Spain ; 3 Hospital Universitario Virgen del Rocío, Spain

Keyword(s): HIV, Virological Events, Prefurge, Unsupervised Learning.

Related Ontology Subjects/Areas/Topics: Artificial Intelligence ; Artificial Intelligence and Decision Support Systems ; Data Mining ; Databases and Information Systems Integration ; Enterprise Application Integration ; Enterprise Information Systems ; Information Systems Analysis and Specification ; Problem Solving ; Sensor Networks ; Signal Processing ; Soft Computing ; Software Engineering

Abstract: Virological events in HIV-infected patients can rise with no apparent reason. Therefore, when they appear, immunologists or medical doctors do not know whether they will produce other future virological events or they will entail relevant clinical consequences. This paper presents the results of applying Prefurge to HIV-infected patients’ clinical data, with the aim of obtaining rules and information about this set of clinical trials data that will relate these kinds of virological events.

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.15.203.242

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Domínguez, M.; Aroba, J.; G. Enríquez, J.; Ramos, I.; M. Lucena-Soto, J. and J. Escalona, M. (2014). Advances in the Decision Making for Treatments of Chronic Patients Using Fuzzy Logic and Data Mining Techniques. In Proceedings of the 16th International Conference on Enterprise Information Systems - Volume 3: ICEIS; ISBN 978-989-758-027-7; ISSN 2184-4992, SciTePress, pages 325-330. DOI: 10.5220/0004969503250330

@conference{iceis14,
author={M. Domínguez. and J. Aroba. and J. {G. Enríquez}. and I. Ramos. and J. {M. Lucena{-}Soto}. and M. {J. Escalona}.},
title={Advances in the Decision Making for Treatments of Chronic Patients Using Fuzzy Logic and Data Mining Techniques},
booktitle={Proceedings of the 16th International Conference on Enterprise Information Systems - Volume 3: ICEIS},
year={2014},
pages={325-330},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004969503250330},
isbn={978-989-758-027-7},
issn={2184-4992},
}

TY - CONF

JO - Proceedings of the 16th International Conference on Enterprise Information Systems - Volume 3: ICEIS
TI - Advances in the Decision Making for Treatments of Chronic Patients Using Fuzzy Logic and Data Mining Techniques
SN - 978-989-758-027-7
IS - 2184-4992
AU - Domínguez, M.
AU - Aroba, J.
AU - G. Enríquez, J.
AU - Ramos, I.
AU - M. Lucena-Soto, J.
AU - J. Escalona, M.
PY - 2014
SP - 325
EP - 330
DO - 10.5220/0004969503250330
PB - SciTePress