loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Steffen Illium ; Gretchen Griffin ; Michael Kölle ; Maximilian Zorn ; Jonas Nüßlein and Claudia Linnhoff-Popien

Affiliation: Institute of Informatics, LMU Munich, Oettingenstraße 67, Munich, Germany

Keyword(s): Voronoi Patches, Information Transport, Image Classification, Data Augmentation, Deep Learning.

Abstract: Overfitting is a problem in Convolutional Neural Networks (CNN) that causes poor generalization of models on unseen data. To remediate this problem, many new and diverse data augmentation (DA) methods have been proposed to supplement or generate more training data, and thereby increase its quality. In this work, we propose a new DA algorithm: VoronoiPatches (VP). We primarily utilize non-linear re-combination of information within an image, fragmenting and occluding small information patches. Unlike other DA methods, VP uses small convex polygon-shaped patches in a random layout to transport information around within an image. In our experiments, VP outperformed current DA methods regarding model variance and overfitting tendencies. We demonstrate DA utilizing non-linear re-combination of information within images, and non-orthogonal shapes and structures improves CNN model robustness on unseen data.

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.144.45.187

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Illium, S.; Griffin, G.; Kölle, M.; Zorn, M.; Nüßlein, J. and Linnhoff-Popien, C. (2023). VoronoiPatches: Evaluating a New Data Augmentation Method. In Proceedings of the 15th International Conference on Agents and Artificial Intelligence - Volume 3: ICAART; ISBN 978-989-758-623-1; ISSN 2184-433X, SciTePress, pages 350-357. DOI: 10.5220/0011670000003393

@conference{icaart23,
author={Steffen Illium. and Gretchen Griffin. and Michael Kölle. and Maximilian Zorn. and Jonas Nüßlein. and Claudia Linnhoff{-}Popien.},
title={VoronoiPatches: Evaluating a New Data Augmentation Method},
booktitle={Proceedings of the 15th International Conference on Agents and Artificial Intelligence - Volume 3: ICAART},
year={2023},
pages={350-357},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0011670000003393},
isbn={978-989-758-623-1},
issn={2184-433X},
}

TY - CONF

JO - Proceedings of the 15th International Conference on Agents and Artificial Intelligence - Volume 3: ICAART
TI - VoronoiPatches: Evaluating a New Data Augmentation Method
SN - 978-989-758-623-1
IS - 2184-433X
AU - Illium, S.
AU - Griffin, G.
AU - Kölle, M.
AU - Zorn, M.
AU - Nüßlein, J.
AU - Linnhoff-Popien, C.
PY - 2023
SP - 350
EP - 357
DO - 10.5220/0011670000003393
PB - SciTePress