Authors:
Marius Schlegel
and
Kai-Uwe Sattler
Affiliation:
TU Ilmenau, Germany
Keyword(s):
Machine Learning Lifecycle, Artifact Management, Web Tool, Decision Support.
Abstract:
The explorative and iterative nature of developing and operating machine learning (ML) applications leads to a variety of ML artifacts, such as datasets, models, hyperparameters, metrics, software, and configurations. To enable comparability, traceability, and reproducibility of ML artifacts across the ML lifecycle steps and iterations, platforms, frameworks, and tools have been developed to support their collection, storage, and management. Selecting the best-suited ML artifact management systems (AMSs) for a particular use case is often challenging and time-consuming due to the plethora of AMSs, their different focus, and imprecise specifications of features and properties. Based on assessment criteria and their application to a representative selection of more than 60 AMSs, this paper introduces an interactive web tool that enables the convenient and time-efficient exploration and comparison of ML AMSs.