Authors:
F. Dornaika
1
;
A. Bosgahzadeh
2
and
A. Assoum
3
Affiliations:
1
University of the Basque Country EHU/UPV, IKERBASQUE and Basque Foundation for Science, Spain
;
2
University of the Basque Country EHU/UPV, Spain
;
3
Lebanese University, Lebanon
Keyword(s):
3D Head Pose Estimation, Local Discriminant Embedding.
Related
Ontology
Subjects/Areas/Topics:
Applications and Services
;
Computer Vision, Visualization and Computer Graphics
;
Enterprise Information Systems
;
Human and Computer Interaction
;
Human-Computer Interaction
;
Motion, Tracking and Stereo Vision
;
Tracking and Visual Navigation
Abstract:
In this paper, we propose a self-optimized Local Discriminant Embedding and apply it to the problem of model-less 3D head pose estimation. Recently, Local Discriminant Embedding (LDE) method was proposed in order to tackle some limitations of the global Linear Discriminant Analysis (LDA) method. In order to better characterize the discriminant property of the data, LDE builds two adjacency graphs: the within-class
adjacency graph and the between-class adjacency graph. However, it is very difficult to set in advance these two graphs. Our proposed self-optimized LDE has two important characteristics: (i) while all graph-based manifold learning techniques (supervised and unsupervised) are depending on several parameters that require manual tuning, ours is parameter-free, and (ii) it adaptively estimates the local neighborhood surrounding each sample based on the data similarity. The resulting self-optimized LDE approach has been applied to the problem of model-less coarse 3D head pose e
stimation (person independent 3D pose estimation). It was tested on two large databases: FacePix and Pointing’04. It was conveniently compared with other linear techniques. The experimental results confirm that our method outperforms, in general, the existing ones.
(More)