loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Andrea Biaggi ; Umberto Azadi and Francesca Fontana

Affiliation: Università degli Studi di Milano-Bicocca, Milano, Italy

Keyword(s): Empirical Study, Software Quality Assessment, Software Evolution, Code Anomalies Detection, Artificial Immune Systems.

Abstract: Methods and tools to support quality assessment and code anomaly detection are crucial to enable software evolution and maintenance. In this work, we aim to detect an increase or decrease in code anomalies leveraging on the concept of microstructures, which are relationships between entities in the code. We introduce a tools pipeline, called Cadartis, which uses an innovative immune-inspired approach for code anomaly detection, tailored to the organization’s needs. This approach has been evaluated on 3882 versions of fifteen open-source projects belonging to three different organizations and the results confirm that the approach can be applied to recognize a decrease or increase of code anomalies (anomalous status). The tools pipeline has been designed to automatically learn patterns of microstructures from previous versions of existing systems belonging to the same organization, to build a personalized quality profiler based on its codebase. This work represents a first step towards new perspectives in the field of software quality assessment and it could be integrated into continuous integration pipelines to profile software quality during the development process. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 18.219.18.238

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Biaggi, A.; Azadi, U. and Fontana, F. (2023). A New Approach for Software Quality Assessment Based on Automated Code Anomalies Detection. In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering - ENASE; ISBN 978-989-758-647-7; ISSN 2184-4895, SciTePress, pages 546-553. DOI: 10.5220/0011965200003464

@conference{enase23,
author={Andrea Biaggi. and Umberto Azadi. and Francesca Fontana.},
title={A New Approach for Software Quality Assessment Based on Automated Code Anomalies Detection},
booktitle={Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering - ENASE},
year={2023},
pages={546-553},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0011965200003464},
isbn={978-989-758-647-7},
issn={2184-4895},
}

TY - CONF

JO - Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering - ENASE
TI - A New Approach for Software Quality Assessment Based on Automated Code Anomalies Detection
SN - 978-989-758-647-7
IS - 2184-4895
AU - Biaggi, A.
AU - Azadi, U.
AU - Fontana, F.
PY - 2023
SP - 546
EP - 553
DO - 10.5220/0011965200003464
PB - SciTePress