loading
Papers

Research.Publish.Connect.

Paper

Authors: André Pomp 1 ; Lucian Poth 2 ; Vadim Kraus 1 and Tobias Meisen 3

Affiliations: 1 Institute of Information Management in Mechanical Engineering, RWTH Aachen University, Aachen and Germany ; 2 Computer Science, RWTH Aachen University, Aachen and Germany ; 3 Chair of Technologies and Management of Digital Transformation, University of Wuppertal, Wuppertal and Germany

ISBN: 978-989-758-372-8

Keyword(s): Semantic Model, Knowledge Graph, Ontologies, Semantic Similarity, Machine Learning.

Abstract: Due to the digitalization of many processes in companies and the increasing networking of devices, there is an ever-increasing amount of data sources and corresponding data sets. To make these data sets accessible, searchable and understandable, recent approaches focus on the creation of semantic models by domain experts, which enable the annotation of the available data attributes with meaningful semantic concepts from knowledge graphs. For simplifying the annotation process, recommendation engines based on the data attribute labels can support this process. However, as soon as the labels are incomprehensible, cryptic or ambiguous, the domain expert will not receive any support. In this paper, we propose a semantic concept recommendation for data attributes based on the data values rather than on the label. Therefore, we extend knowledge graphs to learn different dedicated data representations by including data instances. Using different approaches, such as machine learning, rules or statistical methods, enables us to recommend semantic concepts based on the content of data points rather than on the labels. Our evaluation with public available data sets shows that the accuracy improves when using our flexible and dedicated classification approach. Further, we present shortcomings and extension points that we received from the analysis of our evaluation. (More)

PDF ImageFull Text

Download
CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.228.21.186

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Pomp, André; Poth, L.; Kraus, V. and Meisen, T. (2019). Enhancing Knowledge Graphs with Data Representatives.In Proceedings of the 21st International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-372-8, pages 49-60. DOI: 10.5220/0007677400490060

@conference{iceis19,
author={Pomp, André and Lucian Poth. and Vadim Kraus. and Tobias Meisen.},
title={Enhancing Knowledge Graphs with Data Representatives},
booktitle={Proceedings of the 21st International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2019},
pages={49-60},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0007677400490060},
isbn={978-989-758-372-8},
}

TY - CONF

JO - Proceedings of the 21st International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - Enhancing Knowledge Graphs with Data Representatives
SN - 978-989-758-372-8
AU - Pomp, André
AU - Poth, L.
AU - Kraus, V.
AU - Meisen, T.
PY - 2019
SP - 49
EP - 60
DO - 10.5220/0007677400490060

Login or register to post comments.

Comments on this Paper: Be the first to review this paper.