Authors:
Arun Subramanian
and
Anoop Namboodiri
Affiliation:
Center for Visual Information Technology, International Institute of Information Technology, Hyderabad, India
Keyword(s):
Open-Set Face Verification, Deep Face Embedding, Template Matching, Facial-Attribute Covariates, Deep Neural Networks, Transfer Learning.
Abstract:
Deep Learning on face recognition problems has shown extremely high accuracy owing to their ability in finding strongly discriminating features. However, face images in the wild show variations in pose, lighting, expressions, and the presence of facial attributes (for example eyeglasses). We ask, why then are these variations not detected and used during the matching process? We demonstrate that this is indeed possible while restricting ourselves to facial attribute variation, to prove the case in point. We show two ways of doing so. a) By using the face attribute labels as a form of prior, we bin the matching template pairs into three bins depending on whether each template of the matching pair possesses a given facial attribute or not. By operating on each bin and averaging the result, we better the EER of SOTA by over 1 % over a large set of matching pairs. b) We use the attribute labels and correlate them with each neuron of an embedding generated by a SOTA architecture pre-train
ed DNN on a large Face dataset and fine-tuned on face-attribute labels. We then suppress a set of maximally correlating neurons and perform matching after doing so. We demonstrate this improves the EER by over 2 %.
(More)