Authors:
Deema Abdal Hafeth
;
Amr Ahmed
and
David Cobham
Affiliation:
University of Lincoln, United Kingdom
Keyword(s):
Smoking Status Classification, Text Mining, User-Generated Contents.
Related
Ontology
Subjects/Areas/Topics:
Artificial Intelligence
;
Information Extraction
;
Knowledge Discovery and Information Retrieval
;
Knowledge-Based Systems
;
Mining Text and Semi-Structured Data
;
Symbolic Systems
Abstract:
Text mining techniques have demonstrated a potential to unlock significant patient health information from unstructured text. However, most of the published work has been done using clinical reports, which are difficult to access due to patient confidentiality. In this paper, we present an investigation of text analysis for smoking status classification from User-Generated Contents (UGC), such as online forum discussions. UGC are more widely available, compared to clinical reports. Based on analyzing the properties of UGC, we propose the use of Linguistic Inquiry Word Count (LIWC) an approach being used for the first time for such a health-related task. We also explore various factors that affect the classification performance. The experimental results and evaluation indicate that the forum classification performs well with the proposed features. It has achieved an accuracy of up to 75% for smoking status prediction. Furthermore, the utilized features set is compact (88 features only
) and independent of the dataset size.
(More)