loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Paper Unlock

Authors: Jia Qu 1 ; Nobuyuki Hiruta 2 ; Kensuke Terai 2 ; Hirokazu Nosato 3 ; Masahiro Murakawa 1 ; 3 and Hidenori Sakanashi 1 ; 3

Affiliations: 1 Department of Intelligent Interaction Technologies, University of Tsukuba, Tsukuba, Japan ; 2 Department of Surgical Pathology, Toho University Sakura Medical Center, Sakura, Japan ; 3 Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Japan

Keyword(s): Pathology Image, Deep Learning, Transfer Learning, Color-Index Local Auto-Correlation (CILAC).

Abstract: Deep learning using Convolutional Neural Networks (CNN) has been demonstrated unprecedentedly powerful for image classification. Subsequently, computer-aided diagnosis (CAD) for pathology image has been largely facilitated due to the deep learning related approaches. However, because of extremely high cost of pathologist's professional work, the lack of well annotated pathological image data to train deep neural networks is currently a big problem. Aiming at further improving the performance of deep neural networks and alleviating the lack of annotated pathology data, we propose a full-automatic knowledge transferring based stepwise fine-tuning scheme to make deep neural networks follow pathologist’s perception manner and understand pathology step by step. To realize this conception, we also introduce a new type of target correlation intermediate dataset which can be yielded by using fully automated processing. By extracting rough but stain-robust pathology-related information from u nannotated pathology images with handcrafted features, and making use of these materials to intermediately train deep neural networks, deep neural networks are expected to acquire fundamental pathological knowledge in advance so that boosted in the final task. In experiments, we validate the new scheme on several well-known deep neural networks. Correspondingly, the results present solid evidence for the effectiveness and suggest feasibility for other tasks. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.145.110.99

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Qu, J.; Hiruta, N.; Terai, K.; Nosato, H.; Murakawa, M. and Sakanashi, H. (2019). Enhanced Deep Learning for Pathology Image Classification: A Knowledge Transfer based Stepwise Fine-tuning Scheme. In Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2019) - BIOIMAGING; ISBN 978-989-758-353-7; ISSN 2184-4305, SciTePress, pages 92-99. DOI: 10.5220/0007356100920099

@conference{bioimaging19,
author={Jia Qu. and Nobuyuki Hiruta. and Kensuke Terai. and Hirokazu Nosato. and Masahiro Murakawa. and Hidenori Sakanashi.},
title={Enhanced Deep Learning for Pathology Image Classification: A Knowledge Transfer based Stepwise Fine-tuning Scheme},
booktitle={Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2019) - BIOIMAGING},
year={2019},
pages={92-99},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0007356100920099},
isbn={978-989-758-353-7},
issn={2184-4305},
}

TY - CONF

JO - Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2019) - BIOIMAGING
TI - Enhanced Deep Learning for Pathology Image Classification: A Knowledge Transfer based Stepwise Fine-tuning Scheme
SN - 978-989-758-353-7
IS - 2184-4305
AU - Qu, J.
AU - Hiruta, N.
AU - Terai, K.
AU - Nosato, H.
AU - Murakawa, M.
AU - Sakanashi, H.
PY - 2019
SP - 92
EP - 99
DO - 10.5220/0007356100920099
PB - SciTePress