loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Paper Unlock

Authors: M. Louis-Rodríguez 1 ; J. Navarro 2 ; I. Arrieta-Salinas 1 ; A. Azqueta-Alzuaz 1 ; A. Sancho-Asensio 2 and J. E. Armendáriz-Iñigo 1

Affiliations: 1 Universidad Pública de Navarra, Spain ; 2 La Salle - Ramon Llull University, Spain

Keyword(s): Distributed Databases, Distributed Transactions, Fine-grained Partitioning, Lookup Tables, Cloud Computing.

Related Ontology Subjects/Areas/Topics: Cloud Application Scalability and Availability ; Cloud Computing ; Cloud Computing Architecture ; Fundamentals ; Internet of Services ; Platforms and Applications ; Services Science

Abstract: Recent advances on providing transactional support on the cloud rely on keeping databases properly partitioned in order to preserve their beloved high scalability features. However, the dynamic nature of cloud environments often leads to either inefficient partitioning schemes or unbalanced partitions, which prevents the resources from being utilized on an elastic fashion. This paper presents a load balancer that uses offline artificial intelligence techniques to come out with the optimal partitioning design and replication protocol for a cloud database providing transactional support. Performed experiments proof the feasibility of our approach and encourage practitioners to progress on this direction by exploring online and unsupervised machine learning techniques applied to this domain.

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.145.105.149

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Louis-Rodríguez, M.; Navarro, J.; Arrieta-Salinas, I.; Azqueta-Alzuaz, A.; Sancho-Asensio, A. and E. Armendáriz-Iñigo, J. (2013). Workload Management for Dynamic Partitioning Schemes in Replicated Databases. In Proceedings of the 3rd International Conference on Cloud Computing and Services Science - CLOSER; ISBN 978-989-8565-52-5; ISSN 2184-5042, SciTePress, pages 273-278. DOI: 10.5220/0004375902730278

@conference{closer13,
author={M. Louis{-}Rodríguez. and J. Navarro. and I. Arrieta{-}Salinas. and A. Azqueta{-}Alzuaz. and A. Sancho{-}Asensio. and J. {E. Armendáriz{-}Iñigo}.},
title={Workload Management for Dynamic Partitioning Schemes in Replicated Databases},
booktitle={Proceedings of the 3rd International Conference on Cloud Computing and Services Science - CLOSER},
year={2013},
pages={273-278},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004375902730278},
isbn={978-989-8565-52-5},
issn={2184-5042},
}

TY - CONF

JO - Proceedings of the 3rd International Conference on Cloud Computing and Services Science - CLOSER
TI - Workload Management for Dynamic Partitioning Schemes in Replicated Databases
SN - 978-989-8565-52-5
IS - 2184-5042
AU - Louis-Rodríguez, M.
AU - Navarro, J.
AU - Arrieta-Salinas, I.
AU - Azqueta-Alzuaz, A.
AU - Sancho-Asensio, A.
AU - E. Armendáriz-Iñigo, J.
PY - 2013
SP - 273
EP - 278
DO - 10.5220/0004375902730278
PB - SciTePress