loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Subodh Ingaleshwar 1 ; Farid Tasharofi 1 ; Mateo Pava 1 ; Harshit Vaishya 1 ; Yazan Tabak 1 ; Juergen Ernst 1 ; Ruben Portas 2 ; Wanja Rast 2 ; Joerg Melzheimer 2 ; Ortwin Aschenborn 2 ; Theresa Goetz 1 ; 3 and Stephan Goeb 1

Affiliations: 1 Fraunhofer- Institute for Integrated Circuits IIS, Erlangen, Germany ; 2 Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany ; 3 Department of Industrial Engineering and Health, University of Applied Sciences Amberg-Weiden, Germany

Keyword(s): Artificial Intelligence (AI), Animal Species, Applied Conservation, Deep Neural Networks, Embedded Systems, Energy Efficient, Image Classification.

Abstract: Accurate and timely recognition of wild animal species is very important for various management processes in nature conservation. In this article, we propose an energy-efficient way of classifying animal species in real-time. Specifically, we present an image classification system on a low power Edge-AI device, which embeds a deep neural network (DNN) in a microcontroller that accurately recognizes different animal species. We evaluate the performance of the proposed system using a real-world dataset collected via a small handheld camera from remote conservation regions of Africa. We implement different DNN models and deploy them on the embedded device to perform real-time classification of animal species. The experimental results show that the proposed animal species classification system is able to obtain a remarkable accuracy of 84.30% with an energy efficiency of 0.885 𝑚J on an edge device. This work provides a new perspective toward low power, energy-efficient, fast and accurat e edge-AI technology to help in inhibiting wildlife-human conflicts. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.149.24.70

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Ingaleshwar, S. ; Tasharofi, F. ; Pava, M. ; Vaishya, H. ; Tabak, Y. ; Ernst, J. ; Portas, R. ; Rast, W. ; Melzheimer, J. ; Aschenborn, O. ; Goetz, T. and Goeb, S. (2024). Wildlife Species Classification on the Edge: A Deep Learning Perspective. In Proceedings of the 16th International Conference on Agents and Artificial Intelligence - Volume 3: ICAART; ISBN 978-989-758-680-4; ISSN 2184-433X, SciTePress, pages 600-608. DOI: 10.5220/0012376700003636

@conference{icaart24,
author={Subodh Ingaleshwar and Farid Tasharofi and Mateo Pava and Harshit Vaishya and Yazan Tabak and Juergen Ernst and Ruben Portas and Wanja Rast and Joerg Melzheimer and Ortwin Aschenborn and Theresa Goetz and Stephan Goeb},
title={Wildlife Species Classification on the Edge: A Deep Learning Perspective},
booktitle={Proceedings of the 16th International Conference on Agents and Artificial Intelligence - Volume 3: ICAART},
year={2024},
pages={600-608},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0012376700003636},
isbn={978-989-758-680-4},
issn={2184-433X},
}

TY - CONF

JO - Proceedings of the 16th International Conference on Agents and Artificial Intelligence - Volume 3: ICAART
TI - Wildlife Species Classification on the Edge: A Deep Learning Perspective
SN - 978-989-758-680-4
IS - 2184-433X
AU - Ingaleshwar, S.
AU - Tasharofi, F.
AU - Pava, M.
AU - Vaishya, H.
AU - Tabak, Y.
AU - Ernst, J.
AU - Portas, R.
AU - Rast, W.
AU - Melzheimer, J.
AU - Aschenborn, O.
AU - Goetz, T.
AU - Goeb, S.
PY - 2024
SP - 600
EP - 608
DO - 10.5220/0012376700003636
PB - SciTePress