loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Paper Unlock

Authors: M. E. Fantacci 1 ; 2 ; A. Traverso 3 ; 4 ; S. Bagnasco 4 ; C. Bracco 5 ; D. Campanella 5 ; G. Chiara 5 ; E. Lopez Torres 4 ; 6 ; A. Manca 5 ; D. Regge 5 ; M. Saletta 4 ; M. Stasi 5 ; S. Vallero 4 ; L. Vassallo 5 and P. Cerello 4

Affiliations: 1 University of Pisa, Italy ; 2 Sezione di Pisa, Italy ; 3 Polytechnic University of Turin, Italy ; 4 Sezione di Torino, Italy ; 5 Candiolo Cancer Institute - FPO, IRCCS, Italy ; 6 CEADEN, Cuba

Keyword(s): Web Service, Cloud Computing, Computer Aided Detection, Lung Nodules.

Abstract: M5L, a Web-based Computer-Aided Detection (CAD) system to automatically detect lung nodules in thoracic Computed Tomographies, is based on a multi-thread analysis by independent subsystems and the combination of their results. The validation on 1043 scans of 3 independent data-sets showed consistency across data-sets, with a sensitivity of about 80% in the 4-8 range of False Positives per scan, despite varying acquisition and reconstruction parameters and annotation criteria. To make M5L CAD available to users without hardware or software new installations and configuration, a Software as a Service (SaaS) approach was adopted. A web front-end handles the work (image upload, results notification and direct on-line annotation by radiologists) and the communication with the OpenNebula-based cloud infrastructure, that allocates virtual computing and storage resources. The exams uploaded through the web interface are anonymised and analysis is performed in an isolated and independent clou d environment. The average processing time for case is about 20 minutes and up to 14 cases can be processed in parallel. Preliminary results on the on-going clinical validation shows that the M5L CAD adds 20% more nodules originally overlooked by radiologists, allowing a remarkable increase of the overall detection sensitivity. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 18.117.105.40

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Fantacci, M.; Traverso, A.; Bagnasco, S.; Bracco, C.; Campanella, D.; Chiara, G.; Torres, E.; Manca, A.; Regge, D.; Saletta, M.; Stasi, M.; Vallero, S.; Vassallo, L. and Cerello, P. (2017). A Web- and Cloud- based Service for the Clinical Use of a CAD (Computer Aided Detection) System. In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017) - BIOINFORMATICS; ISBN 978-989-758-214-1; ISSN 2184-4305, SciTePress, pages 202-209. DOI: 10.5220/0006245402020209

@conference{bioinformatics17,
author={M. E. Fantacci. and A. Traverso. and S. Bagnasco. and C. Bracco. and D. Campanella. and G. Chiara. and E. Lopez Torres. and A. Manca. and D. Regge. and M. Saletta. and M. Stasi. and S. Vallero. and L. Vassallo. and P. Cerello.},
title={A Web- and Cloud- based Service for the Clinical Use of a CAD (Computer Aided Detection) System},
booktitle={Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017) - BIOINFORMATICS},
year={2017},
pages={202-209},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006245402020209},
isbn={978-989-758-214-1},
issn={2184-4305},
}

TY - CONF

JO - Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017) - BIOINFORMATICS
TI - A Web- and Cloud- based Service for the Clinical Use of a CAD (Computer Aided Detection) System
SN - 978-989-758-214-1
IS - 2184-4305
AU - Fantacci, M.
AU - Traverso, A.
AU - Bagnasco, S.
AU - Bracco, C.
AU - Campanella, D.
AU - Chiara, G.
AU - Torres, E.
AU - Manca, A.
AU - Regge, D.
AU - Saletta, M.
AU - Stasi, M.
AU - Vallero, S.
AU - Vassallo, L.
AU - Cerello, P.
PY - 2017
SP - 202
EP - 209
DO - 10.5220/0006245402020209
PB - SciTePress