loading
Documents

Research.Publish.Connect.

Paper

Authors: Guillaume Gadek 1 ; Josefin Betsholtz 2 ; Alexandre Pauchet 3 ; Stéphan Brunessaux 2 ; Nicolas Malandain 3 and Laurent Vercouter 3

Affiliations: 1 Airbus DS, Normandie Univ, INSA Rouen and LITIS, France ; 2 Airbus DS, France ; 3 Normandie Univ, INSA Rouen and LITIS, France

ISBN: 978-989-758-220-2

Keyword(s): Opinion Mining, Context, Contextonyms, Sentiment Analysis, Social Media Data, User Generated Text.

Related Ontology Subjects/Areas/Topics: Applications ; Artificial Intelligence ; Biomedical Engineering ; Biomedical Signal Processing ; Data Manipulation ; Health Engineering and Technology Applications ; Human-Computer Interaction ; Knowledge Engineering and Ontology Development ; Knowledge-Based Systems ; Methodologies and Methods ; Natural Language Processing ; Neurocomputing ; Neurotechnology, Electronics and Informatics ; Pattern Recognition ; Physiological Computing Systems ; Sensor Networks ; Soft Computing ; Symbolic Systems

Abstract: Opinion mining on tweets is a challenge: short texts, implicit topics, inventive spellings and new vocabulary are the rule. We aim at efficiently determining the stance of tweets towards a given target. We propose a method using the concept of contextonyms and contextosets in order to disambiguate implicit content and improve a given stance classifier. Contextonymy is extracted from a word co-occurrence graph, and allows to grasp the sense of a word according to its surrounding words. We evaluate our method on a freely available annotated tweet corpus, used to benchmark stance detection on tweets during SemEval2016.

PDF ImageFull Text

Download
CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 34.238.189.171

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Gadek, G.; Betsholtz, J.; Pauchet, A.; Brunessaux, S.; Malandain, N. and Vercouter, L. (2017). Extracting Contextonyms from Twitter for Stance Detection.In Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-220-2, pages 132-141. DOI: 10.5220/0006190901320141

@conference{icaart17,
author={Guillaume Gadek. and Josefin Betsholtz. and Alexandre Pauchet. and Stéphan Brunessaux. and Nicolas Malandain. and Laurent Vercouter.},
title={Extracting Contextonyms from Twitter for Stance Detection},
booktitle={Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2017},
pages={132-141},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006190901320141},
isbn={978-989-758-220-2},
}

TY - CONF

JO - Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Extracting Contextonyms from Twitter for Stance Detection
SN - 978-989-758-220-2
AU - Gadek, G.
AU - Betsholtz, J.
AU - Pauchet, A.
AU - Brunessaux, S.
AU - Malandain, N.
AU - Vercouter, L.
PY - 2017
SP - 132
EP - 141
DO - 10.5220/0006190901320141

Login or register to post comments.

Comments on this Paper: Be the first to review this paper.