loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Jeferson Lopes 1 ; Giancarlo Lucca 2 ; Rafael Huszcza 1 ; Amanda Mendes 1 ; Eduardo Nunes Borges 1 ; Pablo Guilherme 3 and Leandro Pereira 4

Affiliations: 1 Centro de Ciências Computacionais (C3), Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil ; 2 Mestrado em Engenharia Eletrônica e Computação, Universidade Católica de Pelotas, Pelotas, Brazil ; 3 Centro de Educação, Humanidades e Ciências Biológicas, Universidade Estadual do Paraná (UNESPAR), Paranaguá, Brazil ; 4 Eixo Tecnológico de Meio Ambiente, Instituto Federal do Paraná (IFPR), Paranaguá, Brazil

Keyword(s): Data Repository, Machine Learning, Deep Learning, Geographic Information System.

Abstract: Currently, an enormous volume of data is being generated from diverse sources, including sensors and social media. Effectively managing this unprecedented scale of data and deriving meaningful insights from these extensive datasets present a significant challenge for computer scientists. In this context, this paper outlines the development and documentation of a project dedicated to actively contributing to these critical data-driven initiatives. The described system integrates the features of a scientific data repository with a suite of data science methods, machine learning tools, and resources for geographic data visualization. By consolidating these functionalities on a single platform, users can streamline their workflow and extract insights from data more efficiently. This integrated approach facilitates seamless transitions from data storage to model training and analysis, fostering collaboration and facilitating knowledge sharing among researchers and practitioners. In this w ork, we highlight the system’s key features, focusing on the datasets repository and the machine learning module as central components of our platform. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.129.71.217

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Lopes, J. ; Lucca, G. ; Huszcza, R. ; Mendes, A. ; Nunes Borges, E. ; Guilherme, P. and Pereira, L. (2024). Integrated Data Repository System: Fusion, Learning and Sharing. In Proceedings of the 26th International Conference on Enterprise Information Systems - Volume 1: ICEIS; ISBN 978-989-758-692-7; ISSN 2184-4992, SciTePress, pages 409-416. DOI: 10.5220/0012733700003690

@conference{iceis24,
author={Jeferson Lopes and Giancarlo Lucca and Rafael Huszcza and Amanda Mendes and Eduardo {Nunes Borges} and Pablo Guilherme and Leandro Pereira},
title={Integrated Data Repository System: Fusion, Learning and Sharing},
booktitle={Proceedings of the 26th International Conference on Enterprise Information Systems - Volume 1: ICEIS},
year={2024},
pages={409-416},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0012733700003690},
isbn={978-989-758-692-7},
issn={2184-4992},
}

TY - CONF

JO - Proceedings of the 26th International Conference on Enterprise Information Systems - Volume 1: ICEIS
TI - Integrated Data Repository System: Fusion, Learning and Sharing
SN - 978-989-758-692-7
IS - 2184-4992
AU - Lopes, J.
AU - Lucca, G.
AU - Huszcza, R.
AU - Mendes, A.
AU - Nunes Borges, E.
AU - Guilherme, P.
AU - Pereira, L.
PY - 2024
SP - 409
EP - 416
DO - 10.5220/0012733700003690
PB - SciTePress