Authors:
Marc Ebner
1
and
Stuart Hameroff
2
Affiliations:
1
Eberhard Karls Universität Tübingen, Germany
;
2
The University of Arizona, United States
Keyword(s):
Figure/ground segmentation, Spiking neurons, Consciousness, Gamma-oscillation, Lateral-coupling, Gapjunctions.
Related
Ontology
Subjects/Areas/Topics:
Applications and Services
;
Artificial Intelligence
;
Biomedical Engineering
;
Biomedical Signal Processing
;
Computational Intelligence
;
Computer Vision, Visualization and Computer Graphics
;
Health Engineering and Technology Applications
;
Human-Computer Interaction
;
Medical Image Detection, Acquisition, Analysis and Processing
;
Methodologies and Methods
;
Neural Networks
;
Neurocomputing
;
Neurotechnology, Electronics and Informatics
;
Pattern Recognition
;
Physiological Computing Systems
;
Physiological Processes and Bio-Signal Modeling, Non-Linear Dynamics
;
Sensor Networks
;
Signal Processing
;
Soft Computing
;
Theory and Methods
Abstract:
The human brain is able to perform a number feats that researchers have not been able to replicate in artificial systems. Unsolved questions include: Why are we conscious and how do we process visual information from the input stimulus right down to the individual action. We have created a computational model of visual information processing. A network of spiking neurons, a single layer, is simulated. This layer processes visual information from a virtual retina. In contrast to the standard integrate and fire behavior of biological neurons, we focus on lateral connections between neurons of the same layer. We assume that neurons performing the same function are laterally connected through gap junctions. These lateral connections allow the neurons responding to the same stimulus to synchronize their firing behavior. The lateral connections also enable the neurons to perform figure/ground separation. Even though we describe our model in the context of visual information processing, it
is clear that the methods described, can be applied to other kinds of information, e.g. auditory.
(More)