Authors:
Benjamin Auffarth
;
Agustín Gutierrez–Galvez
and
Santiago Marco
Affiliation:
University of Barcelona;Institute for Bioengineering of Catalonia (IBEC), Spain
Keyword(s):
Olfactory coding, Olfactory bulb, Odorants, Glomeruli, Property–activity relationship, Classification, Nonparametric statistics.
Related
Ontology
Subjects/Areas/Topics:
Applications and Services
;
Artificial Intelligence
;
Biomedical Engineering
;
Biomedical Signal Processing
;
Computer Vision, Visualization and Computer Graphics
;
Data Manipulation
;
Health Engineering and Technology Applications
;
Human-Computer Interaction
;
Medical Image Detection, Acquisition, Analysis and Processing
;
Methodologies and Methods
;
Neurocomputing
;
Neurotechnology, Electronics and Informatics
;
Pattern Recognition
;
Physiological Computing Systems
;
Sensor Networks
;
Soft Computing
Abstract:
The relationship between physicochemical properties of odor molecules and perceived odor quality is arguably one of the most important issues in olfaction and the rules governing this relationship remain unknown. Any given odor molecule will stimulate more than one type of receptor in the nose, perhaps hundreds, and this stimulation reflects itself in the neural code of the olfactory nervous system. We present a method to investigate neural coding at the glomerular level of the olfactory bulb, the first relay for olfactory processing in the brain. Our results give insights into localization of coding sites, relevance of odorant properties for information processing, and the size of coding zones.