loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Paper Unlock

Authors: J. A. Castro-Vargas 1 ; B. S. Zapata-Impata 1 ; P. Gil 2 ; J. A. Garcia-Rodriguez 3 and F. Torres 2

Affiliations: 1 Dept. of Physics, Systems Engineering and Signal Theory, University of Alicante, San Vicente del Raspeig, Alicante and Spain ; 2 Dept. of Physics, Systems Engineering and Signal Theory, University of Alicante, San Vicente del Raspeig, Alicante, Spain, Computer Science Research Institute, University of Alicante, San Vicente del Raspeig, Alicante and Spain ; 3 Dept. of Computer Technology, University of Alicante, San Vicente del Raspeig, Alicante, Spain, Computer Science Research Institute, University of Alicante, San Vicente del Raspeig, Alicante and Spain

Keyword(s): Gesture Recognition from Video, 3D Convolutional Neural Network.

Related Ontology Subjects/Areas/Topics: Applications ; Pattern Recognition ; Robotics ; Software Engineering

Abstract: In the past, methods for hand sign recognition have been successfully tested in Human Robot Interaction (HRI) using traditional methodologies based on static image features and machine learning. However, the recognition of gestures in video sequences is a problem still open, because current detection methods achieve low scores when the background is undefined or in unstructured scenarios. Deep learning techniques are being applied to approach a solution for this problem in recent years. In this paper, we present a study in which we analyse the performance of a 3DCNN architecture for hand gesture recognition in an unstructured scenario. The system yields a score of 73% in both accuracy and F1. The aim of the work is the implementation of a system for commanding robots with gestures recorded by video in real scenarios.

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.138.174.45

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Castro-Vargas, J. ; Zapata-Impata, B. ; Gil, P. ; Garcia-Rodriguez, J. and Torres, F. (2019). 3DCNN Performance in Hand Gesture Recognition Applied to Robot Arm Interaction. In Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods - ICPRAM; ISBN 978-989-758-351-3; ISSN 2184-4313, SciTePress, pages 802-806. DOI: 10.5220/0007570208020806

@conference{icpram19,
author={J. A. Castro{-}Vargas and B. S. Zapata{-}Impata and P. Gil and J. A. Garcia{-}Rodriguez and F. Torres},
title={3DCNN Performance in Hand Gesture Recognition Applied to Robot Arm Interaction},
booktitle={Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods - ICPRAM},
year={2019},
pages={802-806},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0007570208020806},
isbn={978-989-758-351-3},
issn={2184-4313},
}

TY - CONF

JO - Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods - ICPRAM
TI - 3DCNN Performance in Hand Gesture Recognition Applied to Robot Arm Interaction
SN - 978-989-758-351-3
IS - 2184-4313
AU - Castro-Vargas, J.
AU - Zapata-Impata, B.
AU - Gil, P.
AU - Garcia-Rodriguez, J.
AU - Torres, F.
PY - 2019
SP - 802
EP - 806
DO - 10.5220/0007570208020806
PB - SciTePress