Authors:
Lindsay Semler
and
Lucia Dettori
Affiliation:
DePaul University, United States
Keyword(s):
Multi-Resolution Analysis, Texture Classification, Wavelet, Ridgelet, Computed Tomography.
Related
Ontology
Subjects/Areas/Topics:
Artificial Intelligence
;
Biomedical Engineering
;
Biomedical Signal Processing
;
Computer Vision, Visualization and Computer Graphics
;
Data Manipulation
;
Feature Extraction
;
Features Extraction
;
Health Engineering and Technology Applications
;
Human-Computer Interaction
;
Image and Video Analysis
;
Informatics in Control, Automation and Robotics
;
Medical Image Analysis
;
Methodologies and Methods
;
Neurocomputing
;
Neurotechnology, Electronics and Informatics
;
Pattern Recognition
;
Physiological Computing Systems
;
Sensor Networks
;
Signal Processing, Sensors, Systems Modeling and Control
;
Soft Computing
;
Statistical Approach
;
Wavelet Analysis
Abstract:
The research presented in this article is aimed at developing an automated imaging system for classification of tissues in medical images obtained from Computed Tomography (CT) scans. The article focuses on using multi-resolution texture analysis, specifically: the Haar wavelet, Daubechies wavelet, Coiflet wavelet, and the ridgelet. The algorithm consists of two steps: automatic extraction of the most discriminative texture features of regions of interest and creation of a classifier that automatically identifies the various tissues. The classification step is implemented using a cross-validation Classification and Regression Tree approach. A comparison of wavelet-based and ridgelet-based algorithms is presented. Tests on a large set of chest and abdomen CT images indicate that, among the three wavelet-based algorithms, the one using texture features derived from the Haar wavelet transform clearly outperforms the one based on Daubechies and Coiflet transform. The tests also show that
the ridgelet-based algorithm is significantly more effective and that texture features based on the ridgelet transform are better suited for texture classification in CT medical images.
(More)