Authors:
Tobias Berka
and
Helmut A. Mayer
Affiliation:
University of Salzburg, Austria
Keyword(s):
Neural network, Genetic algorithm, Nonlinear dimensionality reduction, Nonlinear feature construction, Classification.
Related
Ontology
Subjects/Areas/Topics:
Artificial Intelligence
;
Biomedical Engineering
;
Biomedical Signal Processing
;
Classification
;
Computational Intelligence
;
Evolutionary Computation
;
Feature Selection and Extraction
;
Health Engineering and Technology Applications
;
Human-Computer Interaction
;
Methodologies and Methods
;
Neural Networks
;
Neurocomputing
;
Neurotechnology, Electronics and Informatics
;
Pattern Recognition
;
Physiological Computing Systems
;
Sensor Networks
;
Signal Processing
;
Soft Computing
;
Theory and Methods
Abstract:
Predicting the class membership of a set of patterns represented by points in a multi-dimensional space critically depends on their specific distribution. To improve the classification performance, pattern vectors may be transformed. There is a range of linear methods for feature construction, but these are often limited in their performance. Nonlinear methods are a more recent development in this field, but these pose difficult optimization problems. Evolutionary approaches have been used to optimize both linear and nonlinear functions for feature construction. For nonlinear feature construction, a particular problem is how to encode the function in order to limit the huge search space while preserving enough flexibility to evolve effective solutions. In this paper, we present a new method for generating a nonlinear function for feature construction using multi-layer perceptrons whose weights are shaped by evolution. By pre-defining the architecture of the neural network we can dire
ctly influence the computational capacity of the function and the number of features to be constructed. We evaluate the suggested neural feature construction on four commonly used data sets and report an improvement in classification accuracy ranging from 4 to 13 percentage points over the performance on the original pattern set.
(More)