Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Jonas Nüßlein 1 ; Leo Sünkel 1 ; Jonas Stein 1 ; Tobias Rohe 1 ; Daniëlle Schuman 1 ; Sebastian Feld 2 ; Corey O’Meara 3 ; Giorgio Cortiana 3 and Claudia Linnhoff-Popien 1

Affiliations: 1 Institute of Computer Science, LMU Munich, Germany ; 2 Quantum & Computer Engineering Department, Delft University of Technology, The Netherlands ; 3 E.ON Digital Technology GmbH, Germany

Keyword(s): QAOA, Quantum Annealing, QUBO, Couplings, Symmetry, Ising, Circuit Depth

Abstract: Quantum Approximate Optimization Algorithm (QAOA) and Quantum Annealing are prominent approaches for solving combinatorial optimization problems, such as those formulated as Quadratic Unconstrained Binary Optimization (QUBO). These algorithms aim to minimize the objective function $x^T Q x$, where $Q$ is a QUBO matrix. However, the number of two-qubit CNOT gates in QAOA circuits and the complexity of problem embeddings in Quantum Annealing scale linearly with the number of non-zero couplings in $Q$, contributing to significant computational and error-related challenges. To address this, we introduce the concept of \textit{semi-symmetries} in QUBO matrices and propose an algorithm for identifying and factoring these symmetries into ancilla qubits. \textit{Semi-symmetries} frequently arise in optimization problems such as \textit{Maximum Clique}, \textit{Hamilton Cycles}, \textit{Graph Coloring}, and \textit{Graph Isomorphism}. We theoretically demonstrate that the modified QUBO matr ix $Q_{\text{mod}}$ retains the same energy spectrum as the original $Q$. Experimental evaluations on the aforementioned problems show that our algorithm reduces the number of couplings and QAOA circuit depth by up to $45\%$. For Quantum Annealing, these reductions also lead to sparser problem embeddings, shorter qubit chains and better performance. This work highlights the utility of exploiting QUBO matrix structure to optimize quantum algorithms, advancing their scalability and practical applicability to real-world combinatorial problems. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 18.219.151.245

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Nüßlein, J., Sünkel, L., Stein, J., Rohe, T., Schuman, D., Feld, S., O’Meara, C., Cortiana, G. and Linnhoff-Popien, C. (2025). Reducing QUBO Density by Factoring out Semi-Symmetries. In Proceedings of the 17th International Conference on Agents and Artificial Intelligence - Volume 1: QAIO; ISBN 978-989-758-737-5; ISSN 2184-433X, SciTePress, pages 783-792. DOI: 10.5220/0013395900003890

@conference{qaio25,
author={Jonas Nüßlein and Leo Sünkel and Jonas Stein and Tobias Rohe and Daniëlle Schuman and Sebastian Feld and Corey O’Meara and Giorgio Cortiana and Claudia Linnhoff{-}Popien},
title={Reducing QUBO Density by Factoring out Semi-Symmetries},
booktitle={Proceedings of the 17th International Conference on Agents and Artificial Intelligence - Volume 1: QAIO},
year={2025},
pages={783-792},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0013395900003890},
isbn={978-989-758-737-5},
issn={2184-433X},
}

TY - CONF

JO - Proceedings of the 17th International Conference on Agents and Artificial Intelligence - Volume 1: QAIO
TI - Reducing QUBO Density by Factoring out Semi-Symmetries
SN - 978-989-758-737-5
IS - 2184-433X
AU - Nüßlein, J.
AU - Sünkel, L.
AU - Stein, J.
AU - Rohe, T.
AU - Schuman, D.
AU - Feld, S.
AU - O’Meara, C.
AU - Cortiana, G.
AU - Linnhoff-Popien, C.
PY - 2025
SP - 783
EP - 792
DO - 10.5220/0013395900003890
PB - SciTePress