Authors:
Dan Mikami
;
Kazuhiro Otsuka
;
Shiro Kumano
and
Junji Yamato
Affiliation:
NTT, Japan
Keyword(s):
Pose Tracking, Face Pose, Memory-based Prediction, Memory Acquisition.
Related
Ontology
Subjects/Areas/Topics:
Applications and Services
;
Computer Vision, Visualization and Computer Graphics
;
Enterprise Information Systems
;
Human and Computer Interaction
;
Human-Computer Interaction
;
Motion, Tracking and Stereo Vision
;
Tracking and Visual Navigation
Abstract:
A novel enhancement for the memory-based particle filter is proposed for visual pose tracking under severe occlusions. The enhancement is the addition of a detection-based memory acquisition mechanism. The memorybased particle filter, M-PF, is a particle filter that predicts prior distributions from past history of target state, which achieved high robustness against complex dynamics of a tracking target. Such high performance requires sufficient history stored in memory. Conventionally, M-PF conducts online memory acquisition which assumes simple target’s dynamics without occlusions for guaranteeing high quality histories. The requirement of memory acquisition narrows the coverage of M-PF in practice. In this paper, we propose a new memory acquisition mechanism for M-PF. The key idea is to use a target detector that can produce additional prior distribution of the target state. We call it M-PFDMA for M-PF with detection-based memory acquisition. The detection-based prior distributio
n well predicts possible target position/pose even in limited visibility conditions caused by occlusions. Such better prior distributions contribute to stable estimation of target state, which is then added to memorized data. As a result, M-PFDMA can start with no memory entries but soon achieve stable tracking even under severe occlusions. Experiments confirm M-PFDMA’s good performance in such conditions.
(More)