Author:
Andrew Schumann
Affiliation:
University of Information Technology and Management in Rzeszow, Poland
Keyword(s):
Actin, Swarm Computing, Slime Mould Computing, Networks.
Related
Ontology
Subjects/Areas/Topics:
Biomedical Engineering
;
Biomedical Signal Processing
;
Evolutionary Systems
;
Real-Time Systems
Abstract:
Actin is one of the most important proteins responsible for a reaction of cells to external stimuli (stresses). There are monomeric actin or G-actin and polimeric actin or F-actin. Monomers of G-actin are connected into double helical filaments of F-actin by the processes of nucleation, polymerization, and depolymerization. Filaments are of 7-8 nm in diameter. They are of several microns in length. Furthermore, filaments can be organized as complex networks of different forms: unstable bunches (parallel unbranched filaments), trees (branched filaments), stable bunches (cross-linked filaments). Actin filament networks can be considered a natural computational model of cells to perform different responses to different external stimuli. So, in this model we have inputs as different stresses and outputs as formations and destructions of filaments, on the one hand, and as assemblies and disassemblies of actin filament networks, on the other hand. Hence, under different external conditions
we observe dynamic changes in the length of actin filaments and in the outlook of filament networks. As we see, the main difference of actin filament networks from others including neural networks is that the topology of actin filament networks changes in responses to dynamics of external stimuli. For instance, a neural network is a sorted triple (N,V,w), where N is the set of neurons/processors, V is a set of connections among neurons/processors, and w is a weight for each connection. In the case of actin filament networks we deal with a variability of filaments/processors. Some new filaments/processors can appear in one conditions and they can disappear in other conditions. The same situation when the computational substratum changes during the time of computations is faced in the so-called swarm computing, e.g. in slime mould
computing. In this paper we propose a swarm computing on the medium of actin filament networks.
(More)