Authors:
Omar Y. Abdelaziz
1
;
Mamdouh A. Gadalla
2
and
Fatma H. Ashour
1
Affiliations:
1
Cairo University, Egypt
;
2
The British University in Egypt, Egypt
Keyword(s):
Biomethanol, Process Simulation, Process Design, Rice Straw, Biorefinery.
Related
Ontology
Subjects/Areas/Topics:
Application Domains
;
Chemical and Petroleum Engineering
;
Simulation and Modeling
Abstract:
Methanol is considered an alternative energy source due to its various applicability and high octane. As a fuel, it releases low emissions, and shows high performance and low risk of flammability. Egypt faces a high population growth rate, which implies an increase in the agricultural production. At present, the agriculture waste materials are burned leading to major environmental problems besides the loss of potential resources. This work builds a design methodology for producing biomethanol fuel from green syngas. The design methodology is based on rigorous model using the Aspen HYSYS® simulation software, and takes into account both economics and environment. As a case study, the design methodology is applied to design a plant that converts rice straw in Egypt into methanol. The raw materials for this process are selected from the major regions in Egypt producing rice straw with a total capacity of 1.6 million tons per year. These local regions are Kafr el Sheikh, Dakahlia and Sha
rkia governorates, located in northern part to Cairo. The methanol produced from the process is estimated to be around 156 thousand metric tons per annum. The process equipment capital costs are estimated to be 498 million dollars with total energy costs of 17 million dollars per annum. On the other hand, an annual revenue of 537 million dollars is obtained. The simulation model obtained in this study can be applied to any syngas coming from other gasification processes with different biomass feedstock. In addition, the model provides a robust basis for further studies of process integration leading to innovative and sustainable solutions to climatic and energy problems.
(More)