Authors:
Sebastian Peralta-Ireijo
;
Bill Chavez-Arias
and
Willy Ugarte
Affiliation:
Universidad Peruana de Ciencias Aplicadas, Lima, Peru
Keyword(s):
Computer Vision, Pothole Detection, Convolutional Neural Network, YOLO, MobileNet.
Abstract:
Road damage, such as potholes and cracks, represent a constant nuisance to drivers as they could potentially cause accidents and damages. Current pothole detection in Peru, is mostly manually operated and hardly ever use image processing technology. To combat this we propose a mobile application capable of real-time road damage detection and spatial mapping across a city. Three models are going to be trained and evaluated (Yolov5, Yolov8 and MobileNet v2) on a novel dataset which contains images from Lima, Peru. Meanwhile, the viability of crack detection through bounding box method will be put to the test, each model will be trained once with cracks annotations and without. The YOLOv5 model was the one with the best results, as it showed the best mAP50 across all of out experiments. It got 99.0% and 98.3% mAP50 with the dataset without crack and with crack annotations, correspondingly.