Authors:
D. Svoboda
1
;
I. A. Williams†
2
;
N. Bowring†
2
and
E. Guest
3
Affiliations:
1
Manchester Metropolitan University; Masaryk University, Czech Republic
;
2
Manchester Metropolitan University, United Kingdom
;
3
School of Computing, Leeds Metropolitan University, United Kingdom
Keyword(s):
Edge detection, Statistical, Histological images, Parametric and Non-Parametric tests.
Related
Ontology
Subjects/Areas/Topics:
Computer Vision, Visualization and Computer Graphics
;
Enhancement and Restoration
;
Feature Extraction
;
Features Extraction
;
Image and Video Analysis
;
Image Filtering
;
Image Formation and Preprocessing
;
Informatics in Control, Automation and Robotics
;
Medical Image Analysis
;
Signal Processing, Sensors, Systems Modeling and Control
;
Statistical Approach
Abstract:
A review of the statistical techniques available for performing edge detection on histological images is presented. The tests under review include the Student’s T Test, the Fisher test, the Chi Square test, the Kolmogorov Smirnov test, and the Mann Whitney U test. All utilize a novel two sample edge detector to compare the statistical properties of two image regions surrounding a central pixel. The performance of the statistical tests is compared using histological biomedical images on which traditional gradient based techniques are not as successful, therefore giving an overall review of the methods, and results. Comparisons are also made to the more traditional Canny and Sobel, edge detection filters. The results show that in the presence of noise and clutter in histological images both parametric and non-parametric statistical tests compare well robustly extracting edge information on a series images.