loading
Papers

Research.Publish.Connect.

Paper

Paper Unlock

Authors: Igor Moreira Félix 1 ; Ana Paula Ambrósio 2 ; Priscila Silva Neves 1 ; Joyce Siqueira 1 and Jacques Duilio Brancher 3

Affiliations: 1 Universidade Federal de Goiás, Brazil ; 2 Federal University of Goiás, Brazil ; 3 Universidade Estadual de Londrina, Brazil

ISBN: 978-989-758-239-4

Keyword(s): Educational Data Mining, Moodle, Prediction, Tool, Virtual Learning Environment.

Related Ontology Subjects/Areas/Topics: Computer-Supported Education ; Information Technologies Supporting Learning ; Learning Analytics

Abstract: Educational data mining (EDM) aims to find useful patterns in large volumes of data from teaching/learning environments, increasing academic results. However, EDM requires previous and deep knowledge of data mining methods and techniques, involving several computing paradigms, preprocessing and results’ interpretation. In this paper, Moodle Predicta, an educational data mining desktop tool is presented. This software is developed in Java and enables non-expert data mining users to enjoy benefits from EDM, within the Moodle system. Divided in two modules, Moodle Predicta allows: (i) visualization of Moodle courses data; and (ii) predict students’ performance.

PDF ImageFull Text

Download
CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.214.184.250

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Moreira Félix, I.; Ambrósio, A.; Silva Neves, P.; Siqueira, J. and Duilio Brancher, J. (2017). Moodle Predicta: A Data Mining Tool for Student Follow Up.In Proceedings of the 9th International Conference on Computer Supported Education - Volume 1: CSEDU, ISBN 978-989-758-239-4, pages 339-346. DOI: 10.5220/0006318403390346

@conference{csedu17,
author={Igor Moreira Félix. and Ana Paula Ambrósio. and Priscila Silva Neves. and Joyce Siqueira. and Jacques Duilio Brancher.},
title={Moodle Predicta: A Data Mining Tool for Student Follow Up},
booktitle={Proceedings of the 9th International Conference on Computer Supported Education - Volume 1: CSEDU,},
year={2017},
pages={339-346},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006318403390346},
isbn={978-989-758-239-4},
}

TY - CONF

JO - Proceedings of the 9th International Conference on Computer Supported Education - Volume 1: CSEDU,
TI - Moodle Predicta: A Data Mining Tool for Student Follow Up
SN - 978-989-758-239-4
AU - Moreira Félix, I.
AU - Ambrósio, A.
AU - Silva Neves, P.
AU - Siqueira, J.
AU - Duilio Brancher, J.
PY - 2017
SP - 339
EP - 346
DO - 10.5220/0006318403390346

Login or register to post comments.

Comments on this Paper: Be the first to review this paper.