loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Vagner Seibert 1 ; Rafael Bastos 1 ; Giovani Maia 1 ; Giancarlo Lucca 2 ; Helida Santos 3 ; Adenauer Yamin 1 and Renata Reiser 1

Affiliations: 1 Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil ; 2 Mestrado em Engenharia Eletrônica e Computação, Universidade Católica de Pelotas, Pelotas, Brazil ; 3 Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Rio Grande, Brazil

Keyword(s): Fuzzy Logic, Air Quality, Sensor Validation, Classification Problem, Machine Learning.

Abstract: This work considers different fuzzy classifier models to evaluate the air quality of indoor spaces, providing flexible systems related to the imprecision of metrics and parameters since the modeling process. Air Quality is a relevant topic concerning modern society, and the research on air quality evaluation provides important alternatives for improving global environmental governance. In this paper, we discuss the performances of the five fuzzy classifiers named CHI, FURIA, WF-C, FARC-HD, and SLAVE, applied in the data classification from an open dataset from Germany. Thus, this domain knowledge enables us to model the inherent uncertainties of attributes’ problems related to Air Quality and Air Quality Index. The results showed that fuzzy approaches offer a valid alternative for determining and correctly classifying indoor air quality with satisfying accuracy, adding flexible modeling in the air quality analysis.

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 18.218.183.207

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Seibert, V. ; Bastos, R. ; Maia, G. ; Lucca, G. ; Santos, H. ; Yamin, A. and Reiser, R. (2024). Toward Air Quality Fuzzy Classification. In Proceedings of the 26th International Conference on Enterprise Information Systems - Volume 1: ICEIS; ISBN 978-989-758-692-7; ISSN 2184-4992, SciTePress, pages 771-778. DOI: 10.5220/0012689000003690

@conference{iceis24,
author={Vagner Seibert and Rafael Bastos and Giovani Maia and Giancarlo Lucca and Helida Santos and Adenauer Yamin and Renata Reiser},
title={Toward Air Quality Fuzzy Classification},
booktitle={Proceedings of the 26th International Conference on Enterprise Information Systems - Volume 1: ICEIS},
year={2024},
pages={771-778},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0012689000003690},
isbn={978-989-758-692-7},
issn={2184-4992},
}

TY - CONF

JO - Proceedings of the 26th International Conference on Enterprise Information Systems - Volume 1: ICEIS
TI - Toward Air Quality Fuzzy Classification
SN - 978-989-758-692-7
IS - 2184-4992
AU - Seibert, V.
AU - Bastos, R.
AU - Maia, G.
AU - Lucca, G.
AU - Santos, H.
AU - Yamin, A.
AU - Reiser, R.
PY - 2024
SP - 771
EP - 778
DO - 10.5220/0012689000003690
PB - SciTePress