Authors:
François Jacquenet
;
Christine Largeron
and
Cédric Udréa
Affiliation:
EURISE - University of Saint-Etienne, France
Keyword(s):
Pattern Management, Association Rules, Non-redundant Rules, Bitmap Arrays.
Related
Ontology
Subjects/Areas/Topics:
Artificial Intelligence
;
Biomedical Engineering
;
Business Analytics
;
Data Engineering
;
Data Mining
;
Databases and Information Systems Integration
;
Datamining
;
Enterprise Information Systems
;
Health Information Systems
;
Information Systems Analysis and Specification
;
Knowledge Management
;
Ontologies and the Semantic Web
;
Sensor Networks
;
Signal Processing
;
Society, e-Business and e-Government
;
Soft Computing
;
Web Information Systems and Technologies
Abstract:
Knowledge Discovery from Databases has more and more impact nowadays and various tools are now available to extract efficiently (in time and memory space) some knowledge from huge databases. Nevertheless, those systems generally produce some large pattern bases and then the management of these one rapidly becomes untractable.
Few works have focused on pattern base management systems and researches on that domain are really new. This paper comes within that context, dealing with a particular class of patterns that is association rules. More precisely, we present the way we have efficiently implemented the search for non redundant rules thanks to a representation of rules in the form of bitmap arrays. Some experiments show that the use of this technique increases dramatically the gain in time and space, allowing us to manage large pattern bases.